Line | Branch | Exec | Source |
---|---|---|---|
1 | /* -*- c++ -*- */ | ||
2 | /* | ||
3 | * Copyright 2012, 2014 Free Software Foundation, Inc. | ||
4 | * | ||
5 | * This file is part of VOLK | ||
6 | * | ||
7 | * SPDX-License-Identifier: LGPL-3.0-or-later | ||
8 | */ | ||
9 | |||
10 | /*! | ||
11 | * \page volk_16ic_magnitude_16i | ||
12 | * | ||
13 | * \b Overview | ||
14 | * | ||
15 | * Computes the magnitude of the complexVector and stores the results | ||
16 | * in the magnitudeVector. | ||
17 | * | ||
18 | * <b>Dispatcher Prototype</b> | ||
19 | * \code | ||
20 | * void volk_16ic_magnitude_16i(int16_t* magnitudeVector, const lv_16sc_t* complexVector, | ||
21 | * unsigned int num_points) \endcode | ||
22 | * | ||
23 | * \b Inputs | ||
24 | * \li complexVector: The complex input vector. | ||
25 | * \li num_points: The number of samples. | ||
26 | * | ||
27 | * \b Outputs | ||
28 | * \li magnitudeVector: The magnitude of the complex values. | ||
29 | * | ||
30 | * \b Example | ||
31 | * \code | ||
32 | * int N = 10000; | ||
33 | * | ||
34 | * volk_16ic_magnitude_16i(); | ||
35 | * | ||
36 | * volk_free(x); | ||
37 | * volk_free(t); | ||
38 | * \endcode | ||
39 | */ | ||
40 | |||
41 | #ifndef INCLUDED_volk_16ic_magnitude_16i_a_H | ||
42 | #define INCLUDED_volk_16ic_magnitude_16i_a_H | ||
43 | |||
44 | #include <inttypes.h> | ||
45 | #include <limits.h> | ||
46 | #include <math.h> | ||
47 | #include <stdio.h> | ||
48 | #include <volk/volk_common.h> | ||
49 | |||
50 | #ifdef LV_HAVE_AVX2 | ||
51 | #include <immintrin.h> | ||
52 | |||
53 | 2 | static inline void volk_16ic_magnitude_16i_a_avx2(int16_t* magnitudeVector, | |
54 | const lv_16sc_t* complexVector, | ||
55 | unsigned int num_points) | ||
56 | { | ||
57 | 2 | unsigned int number = 0; | |
58 | 2 | const unsigned int eighthPoints = num_points / 8; | |
59 | |||
60 | 2 | const int16_t* complexVectorPtr = (const int16_t*)complexVector; | |
61 | 2 | int16_t* magnitudeVectorPtr = magnitudeVector; | |
62 | |||
63 | 2 | __m256 vScalar = _mm256_set1_ps(SHRT_MAX); | |
64 | 2 | __m256 invScalar = _mm256_set1_ps(1.0f / SHRT_MAX); | |
65 | __m256i int1, int2; | ||
66 | __m128i short1, short2; | ||
67 | __m256 cplxValue1, cplxValue2, result; | ||
68 | 2 | __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0); | |
69 | |||
70 |
2/2✓ Branch 0 taken 32766 times.
✓ Branch 1 taken 2 times.
|
32768 | for (; number < eighthPoints; number++) { |
71 | |||
72 | 32766 | int1 = _mm256_load_si256((__m256i*)complexVectorPtr); | |
73 | 32766 | complexVectorPtr += 16; | |
74 | 32766 | short1 = _mm256_extracti128_si256(int1, 0); | |
75 | 32766 | short2 = _mm256_extracti128_si256(int1, 1); | |
76 | |||
77 | 32766 | int1 = _mm256_cvtepi16_epi32(short1); | |
78 | 32766 | int2 = _mm256_cvtepi16_epi32(short2); | |
79 | 32766 | cplxValue1 = _mm256_cvtepi32_ps(int1); | |
80 | 32766 | cplxValue2 = _mm256_cvtepi32_ps(int2); | |
81 | |||
82 | 32766 | cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar); | |
83 | 32766 | cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar); | |
84 | |||
85 | 32766 | cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values | |
86 | 32766 | cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values | |
87 | |||
88 | 32766 | result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values | |
89 | |||
90 | 32766 | result = _mm256_sqrt_ps(result); // Square root the values | |
91 | |||
92 | 32766 | result = _mm256_mul_ps(result, vScalar); // Scale the results | |
93 | |||
94 | 32766 | int1 = _mm256_cvtps_epi32(result); | |
95 | 32766 | int1 = _mm256_packs_epi32(int1, int1); | |
96 | 32766 | int1 = _mm256_permutevar8x32_epi32( | |
97 | int1, idx); // permute to compensate for shuffling in hadd and packs | ||
98 | 32766 | short1 = _mm256_extracti128_si256(int1, 0); | |
99 | _mm_store_si128((__m128i*)magnitudeVectorPtr, short1); | ||
100 | 32766 | magnitudeVectorPtr += 8; | |
101 | } | ||
102 | |||
103 | 2 | number = eighthPoints * 8; | |
104 | 2 | magnitudeVectorPtr = &magnitudeVector[number]; | |
105 | 2 | complexVectorPtr = (const int16_t*)&complexVector[number]; | |
106 |
2/2✓ Branch 0 taken 14 times.
✓ Branch 1 taken 2 times.
|
16 | for (; number < num_points; number++) { |
107 | 14 | const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX; | |
108 | 14 | const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX; | |
109 | 14 | const float val1Result = | |
110 | 14 | sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX; | |
111 | 14 | *magnitudeVectorPtr++ = (int16_t)rintf(val1Result); | |
112 | } | ||
113 | 2 | } | |
114 | #endif /* LV_HAVE_AVX2 */ | ||
115 | |||
116 | #ifdef LV_HAVE_SSE3 | ||
117 | #include <pmmintrin.h> | ||
118 | |||
119 | 2 | static inline void volk_16ic_magnitude_16i_a_sse3(int16_t* magnitudeVector, | |
120 | const lv_16sc_t* complexVector, | ||
121 | unsigned int num_points) | ||
122 | { | ||
123 | 2 | unsigned int number = 0; | |
124 | 2 | const unsigned int quarterPoints = num_points / 4; | |
125 | |||
126 | 2 | const int16_t* complexVectorPtr = (const int16_t*)complexVector; | |
127 | 2 | int16_t* magnitudeVectorPtr = magnitudeVector; | |
128 | |||
129 | 2 | __m128 vScalar = _mm_set_ps1(SHRT_MAX); | |
130 | 2 | __m128 invScalar = _mm_set_ps1(1.0f / SHRT_MAX); | |
131 | |||
132 | __m128 cplxValue1, cplxValue2, result; | ||
133 | |||
134 | __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[8]; | ||
135 | __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4]; | ||
136 | |||
137 |
2/2✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
|
65536 | for (; number < quarterPoints; number++) { |
138 | |||
139 | 65534 | inputFloatBuffer[0] = (float)(complexVectorPtr[0]); | |
140 | 65534 | inputFloatBuffer[1] = (float)(complexVectorPtr[1]); | |
141 | 65534 | inputFloatBuffer[2] = (float)(complexVectorPtr[2]); | |
142 | 65534 | inputFloatBuffer[3] = (float)(complexVectorPtr[3]); | |
143 | |||
144 | 65534 | inputFloatBuffer[4] = (float)(complexVectorPtr[4]); | |
145 | 65534 | inputFloatBuffer[5] = (float)(complexVectorPtr[5]); | |
146 | 65534 | inputFloatBuffer[6] = (float)(complexVectorPtr[6]); | |
147 | 65534 | inputFloatBuffer[7] = (float)(complexVectorPtr[7]); | |
148 | |||
149 | 65534 | cplxValue1 = _mm_load_ps(&inputFloatBuffer[0]); | |
150 | 65534 | cplxValue2 = _mm_load_ps(&inputFloatBuffer[4]); | |
151 | |||
152 | 65534 | complexVectorPtr += 8; | |
153 | |||
154 | 65534 | cplxValue1 = _mm_mul_ps(cplxValue1, invScalar); | |
155 | 65534 | cplxValue2 = _mm_mul_ps(cplxValue2, invScalar); | |
156 | |||
157 | 65534 | cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values | |
158 | 65534 | cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values | |
159 | |||
160 | 65534 | result = _mm_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values | |
161 | |||
162 | 65534 | result = _mm_sqrt_ps(result); // Square root the values | |
163 | |||
164 | 65534 | result = _mm_mul_ps(result, vScalar); // Scale the results | |
165 | |||
166 | _mm_store_ps(outputFloatBuffer, result); | ||
167 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]); | |
168 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]); | |
169 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]); | |
170 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]); | |
171 | } | ||
172 | |||
173 | 2 | number = quarterPoints * 4; | |
174 | 2 | magnitudeVectorPtr = &magnitudeVector[number]; | |
175 | 2 | complexVectorPtr = (const int16_t*)&complexVector[number]; | |
176 |
2/2✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
|
8 | for (; number < num_points; number++) { |
177 | 6 | const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX; | |
178 | 6 | const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX; | |
179 | 6 | const float val1Result = | |
180 | 6 | sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX; | |
181 | 6 | *magnitudeVectorPtr++ = (int16_t)rintf(val1Result); | |
182 | } | ||
183 | 2 | } | |
184 | #endif /* LV_HAVE_SSE3 */ | ||
185 | |||
186 | #ifdef LV_HAVE_SSE | ||
187 | #include <xmmintrin.h> | ||
188 | |||
189 | 2 | static inline void volk_16ic_magnitude_16i_a_sse(int16_t* magnitudeVector, | |
190 | const lv_16sc_t* complexVector, | ||
191 | unsigned int num_points) | ||
192 | { | ||
193 | 2 | unsigned int number = 0; | |
194 | 2 | const unsigned int quarterPoints = num_points / 4; | |
195 | |||
196 | 2 | const int16_t* complexVectorPtr = (const int16_t*)complexVector; | |
197 | 2 | int16_t* magnitudeVectorPtr = magnitudeVector; | |
198 | |||
199 | 2 | __m128 vScalar = _mm_set_ps1(SHRT_MAX); | |
200 | 2 | __m128 invScalar = _mm_set_ps1(1.0f / SHRT_MAX); | |
201 | |||
202 | __m128 cplxValue1, cplxValue2, iValue, qValue, result; | ||
203 | |||
204 | __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[4]; | ||
205 | __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4]; | ||
206 | |||
207 |
2/2✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
|
65536 | for (; number < quarterPoints; number++) { |
208 | |||
209 | 65534 | inputFloatBuffer[0] = (float)(complexVectorPtr[0]); | |
210 | 65534 | inputFloatBuffer[1] = (float)(complexVectorPtr[1]); | |
211 | 65534 | inputFloatBuffer[2] = (float)(complexVectorPtr[2]); | |
212 | 65534 | inputFloatBuffer[3] = (float)(complexVectorPtr[3]); | |
213 | |||
214 | 65534 | cplxValue1 = _mm_load_ps(inputFloatBuffer); | |
215 | 65534 | complexVectorPtr += 4; | |
216 | |||
217 | 65534 | inputFloatBuffer[0] = (float)(complexVectorPtr[0]); | |
218 | 65534 | inputFloatBuffer[1] = (float)(complexVectorPtr[1]); | |
219 | 65534 | inputFloatBuffer[2] = (float)(complexVectorPtr[2]); | |
220 | 65534 | inputFloatBuffer[3] = (float)(complexVectorPtr[3]); | |
221 | |||
222 | 65534 | cplxValue2 = _mm_load_ps(inputFloatBuffer); | |
223 | 65534 | complexVectorPtr += 4; | |
224 | |||
225 | 65534 | cplxValue1 = _mm_mul_ps(cplxValue1, invScalar); | |
226 | 65534 | cplxValue2 = _mm_mul_ps(cplxValue2, invScalar); | |
227 | |||
228 | // Arrange in i1i2i3i4 format | ||
229 | 65534 | iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0)); | |
230 | // Arrange in q1q2q3q4 format | ||
231 | 65534 | qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1)); | |
232 | |||
233 | 65534 | iValue = _mm_mul_ps(iValue, iValue); // Square the I values | |
234 | 65534 | qValue = _mm_mul_ps(qValue, qValue); // Square the Q Values | |
235 | |||
236 | 65534 | result = _mm_add_ps(iValue, qValue); // Add the I2 and Q2 values | |
237 | |||
238 | 65534 | result = _mm_sqrt_ps(result); // Square root the values | |
239 | |||
240 | 65534 | result = _mm_mul_ps(result, vScalar); // Scale the results | |
241 | |||
242 | _mm_store_ps(outputFloatBuffer, result); | ||
243 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]); | |
244 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]); | |
245 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]); | |
246 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]); | |
247 | } | ||
248 | |||
249 | 2 | number = quarterPoints * 4; | |
250 | 2 | magnitudeVectorPtr = &magnitudeVector[number]; | |
251 | 2 | complexVectorPtr = (const int16_t*)&complexVector[number]; | |
252 |
2/2✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
|
8 | for (; number < num_points; number++) { |
253 | 6 | const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX; | |
254 | 6 | const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX; | |
255 | 6 | const float val1Result = | |
256 | 6 | sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX; | |
257 | 6 | *magnitudeVectorPtr++ = (int16_t)rintf(val1Result); | |
258 | } | ||
259 | 2 | } | |
260 | #endif /* LV_HAVE_SSE */ | ||
261 | |||
262 | #ifdef LV_HAVE_GENERIC | ||
263 | |||
264 | 2 | static inline void volk_16ic_magnitude_16i_generic(int16_t* magnitudeVector, | |
265 | const lv_16sc_t* complexVector, | ||
266 | unsigned int num_points) | ||
267 | { | ||
268 | 2 | const int16_t* complexVectorPtr = (const int16_t*)complexVector; | |
269 | 2 | int16_t* magnitudeVectorPtr = magnitudeVector; | |
270 | 2 | unsigned int number = 0; | |
271 | 2 | const float scalar = SHRT_MAX; | |
272 |
2/2✓ Branch 0 taken 262142 times.
✓ Branch 1 taken 2 times.
|
262144 | for (number = 0; number < num_points; number++) { |
273 | 262142 | float real = ((float)(*complexVectorPtr++)) / scalar; | |
274 | 262142 | float imag = ((float)(*complexVectorPtr++)) / scalar; | |
275 | 262142 | *magnitudeVectorPtr++ = | |
276 | 262142 | (int16_t)rintf(sqrtf((real * real) + (imag * imag)) * scalar); | |
277 | } | ||
278 | 2 | } | |
279 | #endif /* LV_HAVE_GENERIC */ | ||
280 | |||
281 | |||
282 | #endif /* INCLUDED_volk_16ic_magnitude_16i_a_H */ | ||
283 | |||
284 | |||
285 | #ifndef INCLUDED_volk_16ic_magnitude_16i_u_H | ||
286 | #define INCLUDED_volk_16ic_magnitude_16i_u_H | ||
287 | |||
288 | #include <inttypes.h> | ||
289 | #include <math.h> | ||
290 | #include <stdio.h> | ||
291 | #include <volk/volk_common.h> | ||
292 | |||
293 | #ifdef LV_HAVE_AVX2 | ||
294 | #include <immintrin.h> | ||
295 | |||
296 | 2 | static inline void volk_16ic_magnitude_16i_u_avx2(int16_t* magnitudeVector, | |
297 | const lv_16sc_t* complexVector, | ||
298 | unsigned int num_points) | ||
299 | { | ||
300 | 2 | unsigned int number = 0; | |
301 | 2 | const unsigned int eighthPoints = num_points / 8; | |
302 | |||
303 | 2 | const int16_t* complexVectorPtr = (const int16_t*)complexVector; | |
304 | 2 | int16_t* magnitudeVectorPtr = magnitudeVector; | |
305 | |||
306 | 2 | __m256 vScalar = _mm256_set1_ps(SHRT_MAX); | |
307 | 2 | __m256 invScalar = _mm256_set1_ps(1.0f / SHRT_MAX); | |
308 | __m256i int1, int2; | ||
309 | __m128i short1, short2; | ||
310 | __m256 cplxValue1, cplxValue2, result; | ||
311 | 2 | __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0); | |
312 | |||
313 |
2/2✓ Branch 0 taken 32766 times.
✓ Branch 1 taken 2 times.
|
32768 | for (; number < eighthPoints; number++) { |
314 | |||
315 | 32766 | int1 = _mm256_loadu_si256((__m256i*)complexVectorPtr); | |
316 | 32766 | complexVectorPtr += 16; | |
317 | 32766 | short1 = _mm256_extracti128_si256(int1, 0); | |
318 | 32766 | short2 = _mm256_extracti128_si256(int1, 1); | |
319 | |||
320 | 32766 | int1 = _mm256_cvtepi16_epi32(short1); | |
321 | 32766 | int2 = _mm256_cvtepi16_epi32(short2); | |
322 | 32766 | cplxValue1 = _mm256_cvtepi32_ps(int1); | |
323 | 32766 | cplxValue2 = _mm256_cvtepi32_ps(int2); | |
324 | |||
325 | 32766 | cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar); | |
326 | 32766 | cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar); | |
327 | |||
328 | 32766 | cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values | |
329 | 32766 | cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values | |
330 | |||
331 | 32766 | result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values | |
332 | |||
333 | 32766 | result = _mm256_sqrt_ps(result); // Square root the values | |
334 | |||
335 | 32766 | result = _mm256_mul_ps(result, vScalar); // Scale the results | |
336 | |||
337 | 32766 | int1 = _mm256_cvtps_epi32(result); | |
338 | 32766 | int1 = _mm256_packs_epi32(int1, int1); | |
339 | 32766 | int1 = _mm256_permutevar8x32_epi32( | |
340 | int1, idx); // permute to compensate for shuffling in hadd and packs | ||
341 | 32766 | short1 = _mm256_extracti128_si256(int1, 0); | |
342 | _mm_storeu_si128((__m128i*)magnitudeVectorPtr, short1); | ||
343 | 32766 | magnitudeVectorPtr += 8; | |
344 | } | ||
345 | |||
346 | 2 | number = eighthPoints * 8; | |
347 | 2 | magnitudeVectorPtr = &magnitudeVector[number]; | |
348 | 2 | complexVectorPtr = (const int16_t*)&complexVector[number]; | |
349 |
2/2✓ Branch 0 taken 14 times.
✓ Branch 1 taken 2 times.
|
16 | for (; number < num_points; number++) { |
350 | 14 | const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX; | |
351 | 14 | const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX; | |
352 | 14 | const float val1Result = | |
353 | 14 | sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX; | |
354 | 14 | *magnitudeVectorPtr++ = (int16_t)rintf(val1Result); | |
355 | } | ||
356 | 2 | } | |
357 | #endif /* LV_HAVE_AVX2 */ | ||
358 | |||
359 | #ifdef LV_HAVE_NEONV7 | ||
360 | #include <arm_neon.h> | ||
361 | #include <volk/volk_neon_intrinsics.h> | ||
362 | |||
363 | static inline void volk_16ic_magnitude_16i_neonv7(int16_t* magnitudeVector, | ||
364 | const lv_16sc_t* complexVector, | ||
365 | unsigned int num_points) | ||
366 | { | ||
367 | unsigned int number = 0; | ||
368 | unsigned int quarter_points = num_points / 4; | ||
369 | |||
370 | const float scalar = SHRT_MAX; | ||
371 | const float inv_scalar = 1.0f / scalar; | ||
372 | |||
373 | int16_t* magnitudeVectorPtr = magnitudeVector; | ||
374 | const lv_16sc_t* complexVectorPtr = complexVector; | ||
375 | |||
376 | float32x4_t mag_vec; | ||
377 | float32x4x2_t c_vec; | ||
378 | |||
379 | for (number = 0; number < quarter_points; number++) { | ||
380 | const int16x4x2_t c16_vec = vld2_s16((int16_t*)complexVectorPtr); | ||
381 | __VOLK_PREFETCH(complexVectorPtr + 4); | ||
382 | c_vec.val[0] = vcvtq_f32_s32(vmovl_s16(c16_vec.val[0])); | ||
383 | c_vec.val[1] = vcvtq_f32_s32(vmovl_s16(c16_vec.val[1])); | ||
384 | // Scale to close to 0-1 | ||
385 | c_vec.val[0] = vmulq_n_f32(c_vec.val[0], inv_scalar); | ||
386 | c_vec.val[1] = vmulq_n_f32(c_vec.val[1], inv_scalar); | ||
387 | // vsqrtq_f32 is armv8 | ||
388 | const float32x4_t mag_vec_squared = _vmagnitudesquaredq_f32(c_vec); | ||
389 | mag_vec = vmulq_f32(mag_vec_squared, _vinvsqrtq_f32(mag_vec_squared)); | ||
390 | // Reconstruct | ||
391 | mag_vec = vmulq_n_f32(mag_vec, scalar); | ||
392 | // Add 0.5 for correct rounding because vcvtq_s32_f32 truncates. | ||
393 | // This works because the magnitude is always positive. | ||
394 | mag_vec = vaddq_f32(mag_vec, vdupq_n_f32(0.5)); | ||
395 | const int16x4_t mag16_vec = vmovn_s32(vcvtq_s32_f32(mag_vec)); | ||
396 | vst1_s16(magnitudeVectorPtr, mag16_vec); | ||
397 | // Advance pointers | ||
398 | magnitudeVectorPtr += 4; | ||
399 | complexVectorPtr += 4; | ||
400 | } | ||
401 | |||
402 | // Deal with the rest | ||
403 | for (number = quarter_points * 4; number < num_points; number++) { | ||
404 | const float real = lv_creal(*complexVectorPtr) * inv_scalar; | ||
405 | const float imag = lv_cimag(*complexVectorPtr) * inv_scalar; | ||
406 | *magnitudeVectorPtr = | ||
407 | (int16_t)rintf(sqrtf((real * real) + (imag * imag)) * scalar); | ||
408 | complexVectorPtr++; | ||
409 | magnitudeVectorPtr++; | ||
410 | } | ||
411 | } | ||
412 | #endif /* LV_HAVE_NEONV7 */ | ||
413 | |||
414 | #endif /* INCLUDED_volk_16ic_magnitude_16i_u_H */ | ||
415 |