| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /* -*- c++ -*- */ | ||
| 2 | /* | ||
| 3 | * Copyright 2012, 2014 Free Software Foundation, Inc. | ||
| 4 | * | ||
| 5 | * This file is part of VOLK | ||
| 6 | * | ||
| 7 | * SPDX-License-Identifier: LGPL-3.0-or-later | ||
| 8 | */ | ||
| 9 | |||
| 10 | /*! | ||
| 11 | * \page volk_16ic_magnitude_16i | ||
| 12 | * | ||
| 13 | * \b Overview | ||
| 14 | * | ||
| 15 | * Computes the magnitude of the complexVector and stores the results | ||
| 16 | * in the magnitudeVector. | ||
| 17 | * | ||
| 18 | * <b>Dispatcher Prototype</b> | ||
| 19 | * \code | ||
| 20 | * void volk_16ic_magnitude_16i(int16_t* magnitudeVector, const lv_16sc_t* complexVector, | ||
| 21 | * unsigned int num_points) \endcode | ||
| 22 | * | ||
| 23 | * \b Inputs | ||
| 24 | * \li complexVector: The complex input vector. | ||
| 25 | * \li num_points: The number of samples. | ||
| 26 | * | ||
| 27 | * \b Outputs | ||
| 28 | * \li magnitudeVector: The magnitude of the complex values. | ||
| 29 | * | ||
| 30 | * \b Example | ||
| 31 | * \code | ||
| 32 | * int N = 10000; | ||
| 33 | * | ||
| 34 | * volk_16ic_magnitude_16i(); | ||
| 35 | * | ||
| 36 | * volk_free(x); | ||
| 37 | * volk_free(t); | ||
| 38 | * \endcode | ||
| 39 | */ | ||
| 40 | |||
| 41 | #ifndef INCLUDED_volk_16ic_magnitude_16i_a_H | ||
| 42 | #define INCLUDED_volk_16ic_magnitude_16i_a_H | ||
| 43 | |||
| 44 | #include <inttypes.h> | ||
| 45 | #include <limits.h> | ||
| 46 | #include <math.h> | ||
| 47 | #include <stdio.h> | ||
| 48 | #include <volk/volk_common.h> | ||
| 49 | |||
| 50 | #ifdef LV_HAVE_AVX2 | ||
| 51 | #include <immintrin.h> | ||
| 52 | |||
| 53 | 2 | static inline void volk_16ic_magnitude_16i_a_avx2(int16_t* magnitudeVector, | |
| 54 | const lv_16sc_t* complexVector, | ||
| 55 | unsigned int num_points) | ||
| 56 | { | ||
| 57 | 2 | unsigned int number = 0; | |
| 58 | 2 | const unsigned int eighthPoints = num_points / 8; | |
| 59 | |||
| 60 | 2 | const int16_t* complexVectorPtr = (const int16_t*)complexVector; | |
| 61 | 2 | int16_t* magnitudeVectorPtr = magnitudeVector; | |
| 62 | |||
| 63 | 2 | __m256 vScalar = _mm256_set1_ps(SHRT_MAX); | |
| 64 | 2 | __m256 invScalar = _mm256_set1_ps(1.0f / SHRT_MAX); | |
| 65 | __m256i int1, int2; | ||
| 66 | __m128i short1, short2; | ||
| 67 | __m256 cplxValue1, cplxValue2, result; | ||
| 68 | 2 | __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0); | |
| 69 | |||
| 70 |
2/2✓ Branch 0 taken 32766 times.
✓ Branch 1 taken 2 times.
|
32768 | for (; number < eighthPoints; number++) { |
| 71 | |||
| 72 | 32766 | int1 = _mm256_load_si256((__m256i*)complexVectorPtr); | |
| 73 | 32766 | complexVectorPtr += 16; | |
| 74 | 32766 | short1 = _mm256_extracti128_si256(int1, 0); | |
| 75 | 32766 | short2 = _mm256_extracti128_si256(int1, 1); | |
| 76 | |||
| 77 | 32766 | int1 = _mm256_cvtepi16_epi32(short1); | |
| 78 | 32766 | int2 = _mm256_cvtepi16_epi32(short2); | |
| 79 | 32766 | cplxValue1 = _mm256_cvtepi32_ps(int1); | |
| 80 | 32766 | cplxValue2 = _mm256_cvtepi32_ps(int2); | |
| 81 | |||
| 82 | 32766 | cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar); | |
| 83 | 32766 | cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar); | |
| 84 | |||
| 85 | 32766 | cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values | |
| 86 | 32766 | cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values | |
| 87 | |||
| 88 | 32766 | result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values | |
| 89 | |||
| 90 | 32766 | result = _mm256_sqrt_ps(result); // Square root the values | |
| 91 | |||
| 92 | 32766 | result = _mm256_mul_ps(result, vScalar); // Scale the results | |
| 93 | |||
| 94 | 32766 | int1 = _mm256_cvtps_epi32(result); | |
| 95 | 32766 | int1 = _mm256_packs_epi32(int1, int1); | |
| 96 | 32766 | int1 = _mm256_permutevar8x32_epi32( | |
| 97 | int1, idx); // permute to compensate for shuffling in hadd and packs | ||
| 98 | 32766 | short1 = _mm256_extracti128_si256(int1, 0); | |
| 99 | _mm_store_si128((__m128i*)magnitudeVectorPtr, short1); | ||
| 100 | 32766 | magnitudeVectorPtr += 8; | |
| 101 | } | ||
| 102 | |||
| 103 | 2 | number = eighthPoints * 8; | |
| 104 | 2 | magnitudeVectorPtr = &magnitudeVector[number]; | |
| 105 | 2 | complexVectorPtr = (const int16_t*)&complexVector[number]; | |
| 106 |
2/2✓ Branch 0 taken 14 times.
✓ Branch 1 taken 2 times.
|
16 | for (; number < num_points; number++) { |
| 107 | 14 | const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX; | |
| 108 | 14 | const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX; | |
| 109 | 14 | const float val1Result = | |
| 110 | 14 | sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX; | |
| 111 | 14 | *magnitudeVectorPtr++ = (int16_t)rintf(val1Result); | |
| 112 | } | ||
| 113 | 2 | } | |
| 114 | #endif /* LV_HAVE_AVX2 */ | ||
| 115 | |||
| 116 | #ifdef LV_HAVE_SSE3 | ||
| 117 | #include <pmmintrin.h> | ||
| 118 | |||
| 119 | 2 | static inline void volk_16ic_magnitude_16i_a_sse3(int16_t* magnitudeVector, | |
| 120 | const lv_16sc_t* complexVector, | ||
| 121 | unsigned int num_points) | ||
| 122 | { | ||
| 123 | 2 | unsigned int number = 0; | |
| 124 | 2 | const unsigned int quarterPoints = num_points / 4; | |
| 125 | |||
| 126 | 2 | const int16_t* complexVectorPtr = (const int16_t*)complexVector; | |
| 127 | 2 | int16_t* magnitudeVectorPtr = magnitudeVector; | |
| 128 | |||
| 129 | 2 | __m128 vScalar = _mm_set_ps1(SHRT_MAX); | |
| 130 | 2 | __m128 invScalar = _mm_set_ps1(1.0f / SHRT_MAX); | |
| 131 | |||
| 132 | __m128 cplxValue1, cplxValue2, result; | ||
| 133 | |||
| 134 | __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[8]; | ||
| 135 | __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4]; | ||
| 136 | |||
| 137 |
2/2✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
|
65536 | for (; number < quarterPoints; number++) { |
| 138 | |||
| 139 | 65534 | inputFloatBuffer[0] = (float)(complexVectorPtr[0]); | |
| 140 | 65534 | inputFloatBuffer[1] = (float)(complexVectorPtr[1]); | |
| 141 | 65534 | inputFloatBuffer[2] = (float)(complexVectorPtr[2]); | |
| 142 | 65534 | inputFloatBuffer[3] = (float)(complexVectorPtr[3]); | |
| 143 | |||
| 144 | 65534 | inputFloatBuffer[4] = (float)(complexVectorPtr[4]); | |
| 145 | 65534 | inputFloatBuffer[5] = (float)(complexVectorPtr[5]); | |
| 146 | 65534 | inputFloatBuffer[6] = (float)(complexVectorPtr[6]); | |
| 147 | 65534 | inputFloatBuffer[7] = (float)(complexVectorPtr[7]); | |
| 148 | |||
| 149 | 65534 | cplxValue1 = _mm_load_ps(&inputFloatBuffer[0]); | |
| 150 | 65534 | cplxValue2 = _mm_load_ps(&inputFloatBuffer[4]); | |
| 151 | |||
| 152 | 65534 | complexVectorPtr += 8; | |
| 153 | |||
| 154 | 65534 | cplxValue1 = _mm_mul_ps(cplxValue1, invScalar); | |
| 155 | 65534 | cplxValue2 = _mm_mul_ps(cplxValue2, invScalar); | |
| 156 | |||
| 157 | 65534 | cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values | |
| 158 | 65534 | cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values | |
| 159 | |||
| 160 | 65534 | result = _mm_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values | |
| 161 | |||
| 162 | 65534 | result = _mm_sqrt_ps(result); // Square root the values | |
| 163 | |||
| 164 | 65534 | result = _mm_mul_ps(result, vScalar); // Scale the results | |
| 165 | |||
| 166 | _mm_store_ps(outputFloatBuffer, result); | ||
| 167 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]); | |
| 168 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]); | |
| 169 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]); | |
| 170 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]); | |
| 171 | } | ||
| 172 | |||
| 173 | 2 | number = quarterPoints * 4; | |
| 174 | 2 | magnitudeVectorPtr = &magnitudeVector[number]; | |
| 175 | 2 | complexVectorPtr = (const int16_t*)&complexVector[number]; | |
| 176 |
2/2✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
|
8 | for (; number < num_points; number++) { |
| 177 | 6 | const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX; | |
| 178 | 6 | const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX; | |
| 179 | 6 | const float val1Result = | |
| 180 | 6 | sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX; | |
| 181 | 6 | *magnitudeVectorPtr++ = (int16_t)rintf(val1Result); | |
| 182 | } | ||
| 183 | 2 | } | |
| 184 | #endif /* LV_HAVE_SSE3 */ | ||
| 185 | |||
| 186 | #ifdef LV_HAVE_SSE | ||
| 187 | #include <xmmintrin.h> | ||
| 188 | |||
| 189 | 2 | static inline void volk_16ic_magnitude_16i_a_sse(int16_t* magnitudeVector, | |
| 190 | const lv_16sc_t* complexVector, | ||
| 191 | unsigned int num_points) | ||
| 192 | { | ||
| 193 | 2 | unsigned int number = 0; | |
| 194 | 2 | const unsigned int quarterPoints = num_points / 4; | |
| 195 | |||
| 196 | 2 | const int16_t* complexVectorPtr = (const int16_t*)complexVector; | |
| 197 | 2 | int16_t* magnitudeVectorPtr = magnitudeVector; | |
| 198 | |||
| 199 | 2 | __m128 vScalar = _mm_set_ps1(SHRT_MAX); | |
| 200 | 2 | __m128 invScalar = _mm_set_ps1(1.0f / SHRT_MAX); | |
| 201 | |||
| 202 | __m128 cplxValue1, cplxValue2, iValue, qValue, result; | ||
| 203 | |||
| 204 | __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[4]; | ||
| 205 | __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4]; | ||
| 206 | |||
| 207 |
2/2✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
|
65536 | for (; number < quarterPoints; number++) { |
| 208 | |||
| 209 | 65534 | inputFloatBuffer[0] = (float)(complexVectorPtr[0]); | |
| 210 | 65534 | inputFloatBuffer[1] = (float)(complexVectorPtr[1]); | |
| 211 | 65534 | inputFloatBuffer[2] = (float)(complexVectorPtr[2]); | |
| 212 | 65534 | inputFloatBuffer[3] = (float)(complexVectorPtr[3]); | |
| 213 | |||
| 214 | 65534 | cplxValue1 = _mm_load_ps(inputFloatBuffer); | |
| 215 | 65534 | complexVectorPtr += 4; | |
| 216 | |||
| 217 | 65534 | inputFloatBuffer[0] = (float)(complexVectorPtr[0]); | |
| 218 | 65534 | inputFloatBuffer[1] = (float)(complexVectorPtr[1]); | |
| 219 | 65534 | inputFloatBuffer[2] = (float)(complexVectorPtr[2]); | |
| 220 | 65534 | inputFloatBuffer[3] = (float)(complexVectorPtr[3]); | |
| 221 | |||
| 222 | 65534 | cplxValue2 = _mm_load_ps(inputFloatBuffer); | |
| 223 | 65534 | complexVectorPtr += 4; | |
| 224 | |||
| 225 | 65534 | cplxValue1 = _mm_mul_ps(cplxValue1, invScalar); | |
| 226 | 65534 | cplxValue2 = _mm_mul_ps(cplxValue2, invScalar); | |
| 227 | |||
| 228 | // Arrange in i1i2i3i4 format | ||
| 229 | 65534 | iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0)); | |
| 230 | // Arrange in q1q2q3q4 format | ||
| 231 | 65534 | qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1)); | |
| 232 | |||
| 233 | 65534 | iValue = _mm_mul_ps(iValue, iValue); // Square the I values | |
| 234 | 65534 | qValue = _mm_mul_ps(qValue, qValue); // Square the Q Values | |
| 235 | |||
| 236 | 65534 | result = _mm_add_ps(iValue, qValue); // Add the I2 and Q2 values | |
| 237 | |||
| 238 | 65534 | result = _mm_sqrt_ps(result); // Square root the values | |
| 239 | |||
| 240 | 65534 | result = _mm_mul_ps(result, vScalar); // Scale the results | |
| 241 | |||
| 242 | _mm_store_ps(outputFloatBuffer, result); | ||
| 243 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]); | |
| 244 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]); | |
| 245 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]); | |
| 246 | 65534 | *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]); | |
| 247 | } | ||
| 248 | |||
| 249 | 2 | number = quarterPoints * 4; | |
| 250 | 2 | magnitudeVectorPtr = &magnitudeVector[number]; | |
| 251 | 2 | complexVectorPtr = (const int16_t*)&complexVector[number]; | |
| 252 |
2/2✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
|
8 | for (; number < num_points; number++) { |
| 253 | 6 | const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX; | |
| 254 | 6 | const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX; | |
| 255 | 6 | const float val1Result = | |
| 256 | 6 | sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX; | |
| 257 | 6 | *magnitudeVectorPtr++ = (int16_t)rintf(val1Result); | |
| 258 | } | ||
| 259 | 2 | } | |
| 260 | #endif /* LV_HAVE_SSE */ | ||
| 261 | |||
| 262 | #ifdef LV_HAVE_GENERIC | ||
| 263 | |||
| 264 | 2 | static inline void volk_16ic_magnitude_16i_generic(int16_t* magnitudeVector, | |
| 265 | const lv_16sc_t* complexVector, | ||
| 266 | unsigned int num_points) | ||
| 267 | { | ||
| 268 | 2 | const int16_t* complexVectorPtr = (const int16_t*)complexVector; | |
| 269 | 2 | int16_t* magnitudeVectorPtr = magnitudeVector; | |
| 270 | 2 | unsigned int number = 0; | |
| 271 | 2 | const float scalar = SHRT_MAX; | |
| 272 |
2/2✓ Branch 0 taken 262142 times.
✓ Branch 1 taken 2 times.
|
262144 | for (number = 0; number < num_points; number++) { |
| 273 | 262142 | float real = ((float)(*complexVectorPtr++)) / scalar; | |
| 274 | 262142 | float imag = ((float)(*complexVectorPtr++)) / scalar; | |
| 275 | 262142 | *magnitudeVectorPtr++ = | |
| 276 | 262142 | (int16_t)rintf(sqrtf((real * real) + (imag * imag)) * scalar); | |
| 277 | } | ||
| 278 | 2 | } | |
| 279 | #endif /* LV_HAVE_GENERIC */ | ||
| 280 | |||
| 281 | |||
| 282 | #endif /* INCLUDED_volk_16ic_magnitude_16i_a_H */ | ||
| 283 | |||
| 284 | |||
| 285 | #ifndef INCLUDED_volk_16ic_magnitude_16i_u_H | ||
| 286 | #define INCLUDED_volk_16ic_magnitude_16i_u_H | ||
| 287 | |||
| 288 | #include <inttypes.h> | ||
| 289 | #include <math.h> | ||
| 290 | #include <stdio.h> | ||
| 291 | #include <volk/volk_common.h> | ||
| 292 | |||
| 293 | #ifdef LV_HAVE_AVX2 | ||
| 294 | #include <immintrin.h> | ||
| 295 | |||
| 296 | 2 | static inline void volk_16ic_magnitude_16i_u_avx2(int16_t* magnitudeVector, | |
| 297 | const lv_16sc_t* complexVector, | ||
| 298 | unsigned int num_points) | ||
| 299 | { | ||
| 300 | 2 | unsigned int number = 0; | |
| 301 | 2 | const unsigned int eighthPoints = num_points / 8; | |
| 302 | |||
| 303 | 2 | const int16_t* complexVectorPtr = (const int16_t*)complexVector; | |
| 304 | 2 | int16_t* magnitudeVectorPtr = magnitudeVector; | |
| 305 | |||
| 306 | 2 | __m256 vScalar = _mm256_set1_ps(SHRT_MAX); | |
| 307 | 2 | __m256 invScalar = _mm256_set1_ps(1.0f / SHRT_MAX); | |
| 308 | __m256i int1, int2; | ||
| 309 | __m128i short1, short2; | ||
| 310 | __m256 cplxValue1, cplxValue2, result; | ||
| 311 | 2 | __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0); | |
| 312 | |||
| 313 |
2/2✓ Branch 0 taken 32766 times.
✓ Branch 1 taken 2 times.
|
32768 | for (; number < eighthPoints; number++) { |
| 314 | |||
| 315 | 32766 | int1 = _mm256_loadu_si256((__m256i*)complexVectorPtr); | |
| 316 | 32766 | complexVectorPtr += 16; | |
| 317 | 32766 | short1 = _mm256_extracti128_si256(int1, 0); | |
| 318 | 32766 | short2 = _mm256_extracti128_si256(int1, 1); | |
| 319 | |||
| 320 | 32766 | int1 = _mm256_cvtepi16_epi32(short1); | |
| 321 | 32766 | int2 = _mm256_cvtepi16_epi32(short2); | |
| 322 | 32766 | cplxValue1 = _mm256_cvtepi32_ps(int1); | |
| 323 | 32766 | cplxValue2 = _mm256_cvtepi32_ps(int2); | |
| 324 | |||
| 325 | 32766 | cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar); | |
| 326 | 32766 | cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar); | |
| 327 | |||
| 328 | 32766 | cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values | |
| 329 | 32766 | cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values | |
| 330 | |||
| 331 | 32766 | result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values | |
| 332 | |||
| 333 | 32766 | result = _mm256_sqrt_ps(result); // Square root the values | |
| 334 | |||
| 335 | 32766 | result = _mm256_mul_ps(result, vScalar); // Scale the results | |
| 336 | |||
| 337 | 32766 | int1 = _mm256_cvtps_epi32(result); | |
| 338 | 32766 | int1 = _mm256_packs_epi32(int1, int1); | |
| 339 | 32766 | int1 = _mm256_permutevar8x32_epi32( | |
| 340 | int1, idx); // permute to compensate for shuffling in hadd and packs | ||
| 341 | 32766 | short1 = _mm256_extracti128_si256(int1, 0); | |
| 342 | _mm_storeu_si128((__m128i*)magnitudeVectorPtr, short1); | ||
| 343 | 32766 | magnitudeVectorPtr += 8; | |
| 344 | } | ||
| 345 | |||
| 346 | 2 | number = eighthPoints * 8; | |
| 347 | 2 | magnitudeVectorPtr = &magnitudeVector[number]; | |
| 348 | 2 | complexVectorPtr = (const int16_t*)&complexVector[number]; | |
| 349 |
2/2✓ Branch 0 taken 14 times.
✓ Branch 1 taken 2 times.
|
16 | for (; number < num_points; number++) { |
| 350 | 14 | const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX; | |
| 351 | 14 | const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX; | |
| 352 | 14 | const float val1Result = | |
| 353 | 14 | sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX; | |
| 354 | 14 | *magnitudeVectorPtr++ = (int16_t)rintf(val1Result); | |
| 355 | } | ||
| 356 | 2 | } | |
| 357 | #endif /* LV_HAVE_AVX2 */ | ||
| 358 | |||
| 359 | #ifdef LV_HAVE_NEONV7 | ||
| 360 | #include <arm_neon.h> | ||
| 361 | #include <volk/volk_neon_intrinsics.h> | ||
| 362 | |||
| 363 | static inline void volk_16ic_magnitude_16i_neonv7(int16_t* magnitudeVector, | ||
| 364 | const lv_16sc_t* complexVector, | ||
| 365 | unsigned int num_points) | ||
| 366 | { | ||
| 367 | unsigned int number = 0; | ||
| 368 | unsigned int quarter_points = num_points / 4; | ||
| 369 | |||
| 370 | const float scalar = SHRT_MAX; | ||
| 371 | const float inv_scalar = 1.0f / scalar; | ||
| 372 | |||
| 373 | int16_t* magnitudeVectorPtr = magnitudeVector; | ||
| 374 | const lv_16sc_t* complexVectorPtr = complexVector; | ||
| 375 | |||
| 376 | float32x4_t mag_vec; | ||
| 377 | float32x4x2_t c_vec; | ||
| 378 | |||
| 379 | for (number = 0; number < quarter_points; number++) { | ||
| 380 | const int16x4x2_t c16_vec = vld2_s16((int16_t*)complexVectorPtr); | ||
| 381 | __VOLK_PREFETCH(complexVectorPtr + 4); | ||
| 382 | c_vec.val[0] = vcvtq_f32_s32(vmovl_s16(c16_vec.val[0])); | ||
| 383 | c_vec.val[1] = vcvtq_f32_s32(vmovl_s16(c16_vec.val[1])); | ||
| 384 | // Scale to close to 0-1 | ||
| 385 | c_vec.val[0] = vmulq_n_f32(c_vec.val[0], inv_scalar); | ||
| 386 | c_vec.val[1] = vmulq_n_f32(c_vec.val[1], inv_scalar); | ||
| 387 | // vsqrtq_f32 is armv8 | ||
| 388 | const float32x4_t mag_vec_squared = _vmagnitudesquaredq_f32(c_vec); | ||
| 389 | mag_vec = vmulq_f32(mag_vec_squared, _vinvsqrtq_f32(mag_vec_squared)); | ||
| 390 | // Reconstruct | ||
| 391 | mag_vec = vmulq_n_f32(mag_vec, scalar); | ||
| 392 | // Add 0.5 for correct rounding because vcvtq_s32_f32 truncates. | ||
| 393 | // This works because the magnitude is always positive. | ||
| 394 | mag_vec = vaddq_f32(mag_vec, vdupq_n_f32(0.5)); | ||
| 395 | const int16x4_t mag16_vec = vmovn_s32(vcvtq_s32_f32(mag_vec)); | ||
| 396 | vst1_s16(magnitudeVectorPtr, mag16_vec); | ||
| 397 | // Advance pointers | ||
| 398 | magnitudeVectorPtr += 4; | ||
| 399 | complexVectorPtr += 4; | ||
| 400 | } | ||
| 401 | |||
| 402 | // Deal with the rest | ||
| 403 | for (number = quarter_points * 4; number < num_points; number++) { | ||
| 404 | const float real = lv_creal(*complexVectorPtr) * inv_scalar; | ||
| 405 | const float imag = lv_cimag(*complexVectorPtr) * inv_scalar; | ||
| 406 | *magnitudeVectorPtr = | ||
| 407 | (int16_t)rintf(sqrtf((real * real) + (imag * imag)) * scalar); | ||
| 408 | complexVectorPtr++; | ||
| 409 | magnitudeVectorPtr++; | ||
| 410 | } | ||
| 411 | } | ||
| 412 | #endif /* LV_HAVE_NEONV7 */ | ||
| 413 | |||
| 414 | #endif /* INCLUDED_volk_16ic_magnitude_16i_u_H */ | ||
| 415 |