Line | Branch | Exec | Source |
---|---|---|---|
1 | /* -*- c++ -*- */ | ||
2 | /* | ||
3 | * Copyright 2012, 2014 Free Software Foundation, Inc. | ||
4 | * | ||
5 | * This file is part of VOLK | ||
6 | * | ||
7 | * SPDX-License-Identifier: LGPL-3.0-or-later | ||
8 | */ | ||
9 | |||
10 | /*! | ||
11 | * \page volk_32fc_s32f_power_spectrum_32f | ||
12 | * | ||
13 | * \b Overview | ||
14 | * | ||
15 | * Calculates the log10 power value for each input point. | ||
16 | * | ||
17 | * <b>Dispatcher Prototype</b> | ||
18 | * \code | ||
19 | * void volk_32fc_s32f_power_spectrum_32f(float* logPowerOutput, const lv_32fc_t* | ||
20 | * complexFFTInput, const float normalizationFactor, unsigned int num_points) \endcode | ||
21 | * | ||
22 | * \b Inputs | ||
23 | * \li complexFFTInput The complex data output from the FFT point. | ||
24 | * \li normalizationFactor: This value is divided against all the input values before the | ||
25 | * power is calculated. \li num_points: The number of fft data points. | ||
26 | * | ||
27 | * \b Outputs | ||
28 | * \li logPowerOutput: The 10.0 * log10(r*r + i*i) for each data point. | ||
29 | * | ||
30 | * \b Example | ||
31 | * \code | ||
32 | * int N = 10000; | ||
33 | * | ||
34 | * volk_32fc_s32f_power_spectrum_32f(); | ||
35 | * | ||
36 | * volk_free(x); | ||
37 | * \endcode | ||
38 | */ | ||
39 | |||
40 | #ifndef INCLUDED_volk_32fc_s32f_power_spectrum_32f_a_H | ||
41 | #define INCLUDED_volk_32fc_s32f_power_spectrum_32f_a_H | ||
42 | |||
43 | #include <inttypes.h> | ||
44 | #include <math.h> | ||
45 | #include <stdio.h> | ||
46 | |||
47 | #ifdef LV_HAVE_GENERIC | ||
48 | |||
49 | static inline void | ||
50 | 2 | volk_32fc_s32f_power_spectrum_32f_generic(float* logPowerOutput, | |
51 | const lv_32fc_t* complexFFTInput, | ||
52 | const float normalizationFactor, | ||
53 | unsigned int num_points) | ||
54 | { | ||
55 | // Calculate the Power of the complex point | ||
56 | 2 | const float normFactSq = 1.0 / (normalizationFactor * normalizationFactor); | |
57 | |||
58 | // Calculate dBm | ||
59 | // 50 ohm load assumption | ||
60 | // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10) | ||
61 | // 75 ohm load assumption | ||
62 | // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15) | ||
63 | |||
64 | /* | ||
65 | * For generic reference, the code below is a volk-optimized | ||
66 | * approach that also leverages a faster log2 calculation | ||
67 | * to calculate the log10: | ||
68 | * n*log10(x) = n*log2(x)/log2(10) = (n/log2(10)) * log2(x) | ||
69 | * | ||
70 | * Generic code: | ||
71 | * | ||
72 | * const float real = *inputPtr++ * iNormalizationFactor; | ||
73 | * const float imag = *inputPtr++ * iNormalizationFactor; | ||
74 | * realFFTDataPointsPtr = 10.0*log10f(((real * real) + (imag * imag)) + 1e-20); | ||
75 | * realFFTDataPointsPtr++; | ||
76 | * | ||
77 | */ | ||
78 | |||
79 | // Calc mag^2 | ||
80 | 2 | volk_32fc_magnitude_squared_32f(logPowerOutput, complexFFTInput, num_points); | |
81 | |||
82 | // Finish ((real * real) + (imag * imag)) calculation: | ||
83 | 2 | volk_32f_s32f_multiply_32f(logPowerOutput, logPowerOutput, normFactSq, num_points); | |
84 | |||
85 | // The following calculates 10*log10(x) = 10*log2(x)/log2(10) = (10/log2(10)) | ||
86 | // * log2(x) | ||
87 | 2 | volk_32f_log2_32f(logPowerOutput, logPowerOutput, num_points); | |
88 | 2 | volk_32f_s32f_multiply_32f( | |
89 | logPowerOutput, logPowerOutput, volk_log2to10factor, num_points); | ||
90 | 2 | } | |
91 | #endif /* LV_HAVE_GENERIC */ | ||
92 | |||
93 | #ifdef LV_HAVE_SSE3 | ||
94 | #include <pmmintrin.h> | ||
95 | |||
96 | #ifdef LV_HAVE_LIB_SIMDMATH | ||
97 | #include <simdmath.h> | ||
98 | #endif /* LV_HAVE_LIB_SIMDMATH */ | ||
99 | |||
100 | static inline void | ||
101 | 4 | volk_32fc_s32f_power_spectrum_32f_a_sse3(float* logPowerOutput, | |
102 | const lv_32fc_t* complexFFTInput, | ||
103 | const float normalizationFactor, | ||
104 | unsigned int num_points) | ||
105 | { | ||
106 | 4 | const float* inputPtr = (const float*)complexFFTInput; | |
107 | 4 | float* destPtr = logPowerOutput; | |
108 | 4 | uint64_t number = 0; | |
109 | 4 | const float iNormalizationFactor = 1.0 / normalizationFactor; | |
110 | #ifdef LV_HAVE_LIB_SIMDMATH | ||
111 | __m128 magScalar = _mm_set_ps1(10.0); | ||
112 | magScalar = _mm_div_ps(magScalar, logf4(magScalar)); | ||
113 | |||
114 | __m128 invNormalizationFactor = _mm_set_ps1(iNormalizationFactor); | ||
115 | |||
116 | __m128 power; | ||
117 | __m128 input1, input2; | ||
118 | const uint64_t quarterPoints = num_points / 4; | ||
119 | for (; number < quarterPoints; number++) { | ||
120 | // Load the complex values | ||
121 | input1 = _mm_load_ps(inputPtr); | ||
122 | inputPtr += 4; | ||
123 | input2 = _mm_load_ps(inputPtr); | ||
124 | inputPtr += 4; | ||
125 | |||
126 | // Apply the normalization factor | ||
127 | input1 = _mm_mul_ps(input1, invNormalizationFactor); | ||
128 | input2 = _mm_mul_ps(input2, invNormalizationFactor); | ||
129 | |||
130 | // Multiply each value by itself | ||
131 | // (r1*r1), (i1*i1), (r2*r2), (i2*i2) | ||
132 | input1 = _mm_mul_ps(input1, input1); | ||
133 | // (r3*r3), (i3*i3), (r4*r4), (i4*i4) | ||
134 | input2 = _mm_mul_ps(input2, input2); | ||
135 | |||
136 | // Horizontal add, to add (r*r) + (i*i) for each complex value | ||
137 | // (r1*r1)+(i1*i1), (r2*r2) + (i2*i2), (r3*r3)+(i3*i3), (r4*r4)+(i4*i4) | ||
138 | power = _mm_hadd_ps(input1, input2); | ||
139 | |||
140 | // Calculate the natural log power | ||
141 | power = logf4(power); | ||
142 | |||
143 | // Convert to log10 and multiply by 10.0 | ||
144 | power = _mm_mul_ps(power, magScalar); | ||
145 | |||
146 | // Store the floating point results | ||
147 | _mm_store_ps(destPtr, power); | ||
148 | |||
149 | destPtr += 4; | ||
150 | } | ||
151 | |||
152 | number = quarterPoints * 4; | ||
153 | #endif /* LV_HAVE_LIB_SIMDMATH */ | ||
154 | // Calculate the FFT for any remaining points | ||
155 | |||
156 |
2/2✓ Branch 0 taken 524284 times.
✓ Branch 1 taken 4 times.
|
524288 | for (; number < num_points; number++) { |
157 | // Calculate dBm | ||
158 | // 50 ohm load assumption | ||
159 | // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10) | ||
160 | // 75 ohm load assumption | ||
161 | // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15) | ||
162 | |||
163 | 524284 | const float real = *inputPtr++ * iNormalizationFactor; | |
164 | 524284 | const float imag = *inputPtr++ * iNormalizationFactor; | |
165 | |||
166 | 524284 | *destPtr = volk_log2to10factor * log2f_non_ieee(((real * real) + (imag * imag))); | |
167 | |||
168 | 524284 | destPtr++; | |
169 | } | ||
170 | 4 | } | |
171 | #endif /* LV_HAVE_SSE3 */ | ||
172 | |||
173 | #ifdef LV_HAVE_NEON | ||
174 | #include <arm_neon.h> | ||
175 | #include <volk/volk_neon_intrinsics.h> | ||
176 | |||
177 | static inline void | ||
178 | volk_32fc_s32f_power_spectrum_32f_neon(float* logPowerOutput, | ||
179 | const lv_32fc_t* complexFFTInput, | ||
180 | const float normalizationFactor, | ||
181 | unsigned int num_points) | ||
182 | { | ||
183 | float* logPowerOutputPtr = logPowerOutput; | ||
184 | const lv_32fc_t* complexFFTInputPtr = complexFFTInput; | ||
185 | const float iNormalizationFactor = 1.0 / normalizationFactor; | ||
186 | unsigned int number; | ||
187 | unsigned int quarter_points = num_points / 4; | ||
188 | float32x4x2_t fft_vec; | ||
189 | float32x4_t log_pwr_vec; | ||
190 | float32x4_t mag_squared_vec; | ||
191 | |||
192 | const float inv_ln10_10 = 4.34294481903f; // 10.0/ln(10.) | ||
193 | |||
194 | for (number = 0; number < quarter_points; number++) { | ||
195 | // Load | ||
196 | fft_vec = vld2q_f32((float*)complexFFTInputPtr); | ||
197 | // Prefetch next 4 | ||
198 | __VOLK_PREFETCH(complexFFTInputPtr + 4); | ||
199 | // Normalize | ||
200 | fft_vec.val[0] = vmulq_n_f32(fft_vec.val[0], iNormalizationFactor); | ||
201 | fft_vec.val[1] = vmulq_n_f32(fft_vec.val[1], iNormalizationFactor); | ||
202 | mag_squared_vec = _vmagnitudesquaredq_f32(fft_vec); | ||
203 | log_pwr_vec = vmulq_n_f32(_vlogq_f32(mag_squared_vec), inv_ln10_10); | ||
204 | // Store | ||
205 | vst1q_f32(logPowerOutputPtr, log_pwr_vec); | ||
206 | // Move pointers ahead | ||
207 | complexFFTInputPtr += 4; | ||
208 | logPowerOutputPtr += 4; | ||
209 | } | ||
210 | |||
211 | // deal with the rest | ||
212 | for (number = quarter_points * 4; number < num_points; number++) { | ||
213 | const float real = lv_creal(*complexFFTInputPtr) * iNormalizationFactor; | ||
214 | const float imag = lv_cimag(*complexFFTInputPtr) * iNormalizationFactor; | ||
215 | |||
216 | *logPowerOutputPtr = | ||
217 | volk_log2to10factor * log2f_non_ieee(((real * real) + (imag * imag))); | ||
218 | complexFFTInputPtr++; | ||
219 | logPowerOutputPtr++; | ||
220 | } | ||
221 | } | ||
222 | |||
223 | #endif /* LV_HAVE_NEON */ | ||
224 | |||
225 | #endif /* INCLUDED_volk_32fc_s32f_power_spectrum_32f_a_H */ | ||
226 |