| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /* -*- c++ -*- */ | ||
| 2 | /* | ||
| 3 | * Copyright 2012, 2014 Free Software Foundation, Inc. | ||
| 4 | * | ||
| 5 | * This file is part of VOLK | ||
| 6 | * | ||
| 7 | * SPDX-License-Identifier: LGPL-3.0-or-later | ||
| 8 | */ | ||
| 9 | |||
| 10 | /*! | ||
| 11 | * \page volk_32fc_s32f_power_spectrum_32f | ||
| 12 | * | ||
| 13 | * \b Overview | ||
| 14 | * | ||
| 15 | * Calculates the log10 power value for each input point. | ||
| 16 | * | ||
| 17 | * <b>Dispatcher Prototype</b> | ||
| 18 | * \code | ||
| 19 | * void volk_32fc_s32f_power_spectrum_32f(float* logPowerOutput, const lv_32fc_t* | ||
| 20 | * complexFFTInput, const float normalizationFactor, unsigned int num_points) \endcode | ||
| 21 | * | ||
| 22 | * \b Inputs | ||
| 23 | * \li complexFFTInput The complex data output from the FFT point. | ||
| 24 | * \li normalizationFactor: This value is divided against all the input values before the | ||
| 25 | * power is calculated. \li num_points: The number of fft data points. | ||
| 26 | * | ||
| 27 | * \b Outputs | ||
| 28 | * \li logPowerOutput: The 10.0 * log10(r*r + i*i) for each data point. | ||
| 29 | * | ||
| 30 | * \b Example | ||
| 31 | * \code | ||
| 32 | * int N = 10000; | ||
| 33 | * | ||
| 34 | * volk_32fc_s32f_power_spectrum_32f(); | ||
| 35 | * | ||
| 36 | * volk_free(x); | ||
| 37 | * \endcode | ||
| 38 | */ | ||
| 39 | |||
| 40 | #ifndef INCLUDED_volk_32fc_s32f_power_spectrum_32f_a_H | ||
| 41 | #define INCLUDED_volk_32fc_s32f_power_spectrum_32f_a_H | ||
| 42 | |||
| 43 | #include <inttypes.h> | ||
| 44 | #include <math.h> | ||
| 45 | #include <stdio.h> | ||
| 46 | |||
| 47 | #ifdef LV_HAVE_GENERIC | ||
| 48 | |||
| 49 | static inline void | ||
| 50 | 2 | volk_32fc_s32f_power_spectrum_32f_generic(float* logPowerOutput, | |
| 51 | const lv_32fc_t* complexFFTInput, | ||
| 52 | const float normalizationFactor, | ||
| 53 | unsigned int num_points) | ||
| 54 | { | ||
| 55 | // Calculate the Power of the complex point | ||
| 56 | 2 | const float normFactSq = 1.0 / (normalizationFactor * normalizationFactor); | |
| 57 | |||
| 58 | // Calculate dBm | ||
| 59 | // 50 ohm load assumption | ||
| 60 | // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10) | ||
| 61 | // 75 ohm load assumption | ||
| 62 | // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15) | ||
| 63 | |||
| 64 | /* | ||
| 65 | * For generic reference, the code below is a volk-optimized | ||
| 66 | * approach that also leverages a faster log2 calculation | ||
| 67 | * to calculate the log10: | ||
| 68 | * n*log10(x) = n*log2(x)/log2(10) = (n/log2(10)) * log2(x) | ||
| 69 | * | ||
| 70 | * Generic code: | ||
| 71 | * | ||
| 72 | * const float real = *inputPtr++ * iNormalizationFactor; | ||
| 73 | * const float imag = *inputPtr++ * iNormalizationFactor; | ||
| 74 | * realFFTDataPointsPtr = 10.0*log10f(((real * real) + (imag * imag)) + 1e-20); | ||
| 75 | * realFFTDataPointsPtr++; | ||
| 76 | * | ||
| 77 | */ | ||
| 78 | |||
| 79 | // Calc mag^2 | ||
| 80 | 2 | volk_32fc_magnitude_squared_32f(logPowerOutput, complexFFTInput, num_points); | |
| 81 | |||
| 82 | // Finish ((real * real) + (imag * imag)) calculation: | ||
| 83 | 2 | volk_32f_s32f_multiply_32f(logPowerOutput, logPowerOutput, normFactSq, num_points); | |
| 84 | |||
| 85 | // The following calculates 10*log10(x) = 10*log2(x)/log2(10) = (10/log2(10)) | ||
| 86 | // * log2(x) | ||
| 87 | 2 | volk_32f_log2_32f(logPowerOutput, logPowerOutput, num_points); | |
| 88 | 2 | volk_32f_s32f_multiply_32f( | |
| 89 | logPowerOutput, logPowerOutput, volk_log2to10factor, num_points); | ||
| 90 | 2 | } | |
| 91 | #endif /* LV_HAVE_GENERIC */ | ||
| 92 | |||
| 93 | #ifdef LV_HAVE_SSE3 | ||
| 94 | #include <pmmintrin.h> | ||
| 95 | |||
| 96 | #ifdef LV_HAVE_LIB_SIMDMATH | ||
| 97 | #include <simdmath.h> | ||
| 98 | #endif /* LV_HAVE_LIB_SIMDMATH */ | ||
| 99 | |||
| 100 | static inline void | ||
| 101 | 4 | volk_32fc_s32f_power_spectrum_32f_a_sse3(float* logPowerOutput, | |
| 102 | const lv_32fc_t* complexFFTInput, | ||
| 103 | const float normalizationFactor, | ||
| 104 | unsigned int num_points) | ||
| 105 | { | ||
| 106 | 4 | const float* inputPtr = (const float*)complexFFTInput; | |
| 107 | 4 | float* destPtr = logPowerOutput; | |
| 108 | 4 | uint64_t number = 0; | |
| 109 | 4 | const float iNormalizationFactor = 1.0 / normalizationFactor; | |
| 110 | #ifdef LV_HAVE_LIB_SIMDMATH | ||
| 111 | __m128 magScalar = _mm_set_ps1(10.0); | ||
| 112 | magScalar = _mm_div_ps(magScalar, logf4(magScalar)); | ||
| 113 | |||
| 114 | __m128 invNormalizationFactor = _mm_set_ps1(iNormalizationFactor); | ||
| 115 | |||
| 116 | __m128 power; | ||
| 117 | __m128 input1, input2; | ||
| 118 | const uint64_t quarterPoints = num_points / 4; | ||
| 119 | for (; number < quarterPoints; number++) { | ||
| 120 | // Load the complex values | ||
| 121 | input1 = _mm_load_ps(inputPtr); | ||
| 122 | inputPtr += 4; | ||
| 123 | input2 = _mm_load_ps(inputPtr); | ||
| 124 | inputPtr += 4; | ||
| 125 | |||
| 126 | // Apply the normalization factor | ||
| 127 | input1 = _mm_mul_ps(input1, invNormalizationFactor); | ||
| 128 | input2 = _mm_mul_ps(input2, invNormalizationFactor); | ||
| 129 | |||
| 130 | // Multiply each value by itself | ||
| 131 | // (r1*r1), (i1*i1), (r2*r2), (i2*i2) | ||
| 132 | input1 = _mm_mul_ps(input1, input1); | ||
| 133 | // (r3*r3), (i3*i3), (r4*r4), (i4*i4) | ||
| 134 | input2 = _mm_mul_ps(input2, input2); | ||
| 135 | |||
| 136 | // Horizontal add, to add (r*r) + (i*i) for each complex value | ||
| 137 | // (r1*r1)+(i1*i1), (r2*r2) + (i2*i2), (r3*r3)+(i3*i3), (r4*r4)+(i4*i4) | ||
| 138 | power = _mm_hadd_ps(input1, input2); | ||
| 139 | |||
| 140 | // Calculate the natural log power | ||
| 141 | power = logf4(power); | ||
| 142 | |||
| 143 | // Convert to log10 and multiply by 10.0 | ||
| 144 | power = _mm_mul_ps(power, magScalar); | ||
| 145 | |||
| 146 | // Store the floating point results | ||
| 147 | _mm_store_ps(destPtr, power); | ||
| 148 | |||
| 149 | destPtr += 4; | ||
| 150 | } | ||
| 151 | |||
| 152 | number = quarterPoints * 4; | ||
| 153 | #endif /* LV_HAVE_LIB_SIMDMATH */ | ||
| 154 | // Calculate the FFT for any remaining points | ||
| 155 | |||
| 156 |
2/2✓ Branch 0 taken 524284 times.
✓ Branch 1 taken 4 times.
|
524288 | for (; number < num_points; number++) { |
| 157 | // Calculate dBm | ||
| 158 | // 50 ohm load assumption | ||
| 159 | // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10) | ||
| 160 | // 75 ohm load assumption | ||
| 161 | // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15) | ||
| 162 | |||
| 163 | 524284 | const float real = *inputPtr++ * iNormalizationFactor; | |
| 164 | 524284 | const float imag = *inputPtr++ * iNormalizationFactor; | |
| 165 | |||
| 166 | 524284 | *destPtr = volk_log2to10factor * log2f_non_ieee(((real * real) + (imag * imag))); | |
| 167 | |||
| 168 | 524284 | destPtr++; | |
| 169 | } | ||
| 170 | 4 | } | |
| 171 | #endif /* LV_HAVE_SSE3 */ | ||
| 172 | |||
| 173 | #ifdef LV_HAVE_NEON | ||
| 174 | #include <arm_neon.h> | ||
| 175 | #include <volk/volk_neon_intrinsics.h> | ||
| 176 | |||
| 177 | static inline void | ||
| 178 | volk_32fc_s32f_power_spectrum_32f_neon(float* logPowerOutput, | ||
| 179 | const lv_32fc_t* complexFFTInput, | ||
| 180 | const float normalizationFactor, | ||
| 181 | unsigned int num_points) | ||
| 182 | { | ||
| 183 | float* logPowerOutputPtr = logPowerOutput; | ||
| 184 | const lv_32fc_t* complexFFTInputPtr = complexFFTInput; | ||
| 185 | const float iNormalizationFactor = 1.0 / normalizationFactor; | ||
| 186 | unsigned int number; | ||
| 187 | unsigned int quarter_points = num_points / 4; | ||
| 188 | float32x4x2_t fft_vec; | ||
| 189 | float32x4_t log_pwr_vec; | ||
| 190 | float32x4_t mag_squared_vec; | ||
| 191 | |||
| 192 | const float inv_ln10_10 = 4.34294481903f; // 10.0/ln(10.) | ||
| 193 | |||
| 194 | for (number = 0; number < quarter_points; number++) { | ||
| 195 | // Load | ||
| 196 | fft_vec = vld2q_f32((float*)complexFFTInputPtr); | ||
| 197 | // Prefetch next 4 | ||
| 198 | __VOLK_PREFETCH(complexFFTInputPtr + 4); | ||
| 199 | // Normalize | ||
| 200 | fft_vec.val[0] = vmulq_n_f32(fft_vec.val[0], iNormalizationFactor); | ||
| 201 | fft_vec.val[1] = vmulq_n_f32(fft_vec.val[1], iNormalizationFactor); | ||
| 202 | mag_squared_vec = _vmagnitudesquaredq_f32(fft_vec); | ||
| 203 | log_pwr_vec = vmulq_n_f32(_vlogq_f32(mag_squared_vec), inv_ln10_10); | ||
| 204 | // Store | ||
| 205 | vst1q_f32(logPowerOutputPtr, log_pwr_vec); | ||
| 206 | // Move pointers ahead | ||
| 207 | complexFFTInputPtr += 4; | ||
| 208 | logPowerOutputPtr += 4; | ||
| 209 | } | ||
| 210 | |||
| 211 | // deal with the rest | ||
| 212 | for (number = quarter_points * 4; number < num_points; number++) { | ||
| 213 | const float real = lv_creal(*complexFFTInputPtr) * iNormalizationFactor; | ||
| 214 | const float imag = lv_cimag(*complexFFTInputPtr) * iNormalizationFactor; | ||
| 215 | |||
| 216 | *logPowerOutputPtr = | ||
| 217 | volk_log2to10factor * log2f_non_ieee(((real * real) + (imag * imag))); | ||
| 218 | complexFFTInputPtr++; | ||
| 219 | logPowerOutputPtr++; | ||
| 220 | } | ||
| 221 | } | ||
| 222 | |||
| 223 | #endif /* LV_HAVE_NEON */ | ||
| 224 | |||
| 225 | #endif /* INCLUDED_volk_32fc_s32f_power_spectrum_32f_a_H */ | ||
| 226 |