Line | Branch | Exec | Source |
---|---|---|---|
1 | /* -*- c++ -*- */ | ||
2 | /* | ||
3 | * Copyright 2012, 2014 Free Software Foundation, Inc. | ||
4 | * | ||
5 | * This file is part of VOLK | ||
6 | * | ||
7 | * SPDX-License-Identifier: LGPL-3.0-or-later | ||
8 | */ | ||
9 | |||
10 | /*! | ||
11 | * \page volk_32fc_s32f_x2_power_spectral_density_32f | ||
12 | * | ||
13 | * \b Overview | ||
14 | * | ||
15 | * Calculates the log10 power value divided by the RBW for each input point. | ||
16 | * | ||
17 | * <b>Dispatcher Prototype</b> | ||
18 | * \code | ||
19 | * void volk_32fc_s32f_x2_power_spectral_density_32f(float* logPowerOutput, const | ||
20 | * lv_32fc_t* complexFFTInput, const float normalizationFactor, const float rbw, unsigned | ||
21 | * int num_points) \endcode | ||
22 | * | ||
23 | * \b Inputs | ||
24 | * \li complexFFTInput The complex data output from the FFT point. | ||
25 | * \li normalizationFactor: This value is divided against all the input values before the | ||
26 | * power is calculated. \li rbw: The resolution bandwidth of the fft spectrum \li | ||
27 | * num_points: The number of fft data points. | ||
28 | * | ||
29 | * \b Outputs | ||
30 | * \li logPowerOutput: The 10.0 * log10((r*r + i*i)/RBW) for each data point. | ||
31 | * | ||
32 | * \b Example | ||
33 | * \code | ||
34 | * int N = 10000; | ||
35 | * | ||
36 | * volk_32fc_s32f_x2_power_spectral_density_32f(); | ||
37 | * | ||
38 | * volk_free(x); | ||
39 | * \endcode | ||
40 | */ | ||
41 | |||
42 | #ifndef INCLUDED_volk_32fc_s32f_x2_power_spectral_density_32f_a_H | ||
43 | #define INCLUDED_volk_32fc_s32f_x2_power_spectral_density_32f_a_H | ||
44 | |||
45 | #include <inttypes.h> | ||
46 | #include <math.h> | ||
47 | #include <stdio.h> | ||
48 | |||
49 | #ifdef LV_HAVE_AVX | ||
50 | #include <immintrin.h> | ||
51 | |||
52 | #ifdef LV_HAVE_LIB_SIMDMATH | ||
53 | #include <simdmath.h> | ||
54 | #endif /* LV_HAVE_LIB_SIMDMATH */ | ||
55 | |||
56 | static inline void | ||
57 | 2 | volk_32fc_s32f_x2_power_spectral_density_32f_a_avx(float* logPowerOutput, | |
58 | const lv_32fc_t* complexFFTInput, | ||
59 | const float normalizationFactor, | ||
60 | const float rbw, | ||
61 | unsigned int num_points) | ||
62 | { | ||
63 | 2 | const float* inputPtr = (const float*)complexFFTInput; | |
64 | 2 | float* destPtr = logPowerOutput; | |
65 | 2 | uint64_t number = 0; | |
66 | 2 | const float iRBW = 1.0 / rbw; | |
67 | 2 | const float iNormalizationFactor = 1.0 / normalizationFactor; | |
68 | |||
69 | #ifdef LV_HAVE_LIB_SIMDMATH | ||
70 | __m256 magScalar = _mm256_set1_ps(10.0); | ||
71 | magScalar = _mm256_div_ps(magScalar, logf4(magScalar)); | ||
72 | |||
73 | __m256 invRBW = _mm256_set1_ps(iRBW); | ||
74 | |||
75 | __m256 invNormalizationFactor = _mm256_set1_ps(iNormalizationFactor); | ||
76 | |||
77 | __m256 power; | ||
78 | __m256 input1, input2; | ||
79 | const uint64_t eighthPoints = num_points / 8; | ||
80 | for (; number < eighthPoints; number++) { | ||
81 | // Load the complex values | ||
82 | input1 = _mm256_load_ps(inputPtr); | ||
83 | inputPtr += 8; | ||
84 | input2 = _mm256_load_ps(inputPtr); | ||
85 | inputPtr += 8; | ||
86 | |||
87 | // Apply the normalization factor | ||
88 | input1 = _mm256_mul_ps(input1, invNormalizationFactor); | ||
89 | input2 = _mm256_mul_ps(input2, invNormalizationFactor); | ||
90 | |||
91 | // Multiply each value by itself | ||
92 | // (r1*r1), (i1*i1), (r2*r2), (i2*i2) | ||
93 | input1 = _mm256_mul_ps(input1, input1); | ||
94 | // (r3*r3), (i3*i3), (r4*r4), (i4*i4) | ||
95 | input2 = _mm256_mul_ps(input2, input2); | ||
96 | |||
97 | // Horizontal add, to add (r*r) + (i*i) for each complex value | ||
98 | // (r1*r1)+(i1*i1), (r2*r2) + (i2*i2), (r3*r3)+(i3*i3), (r4*r4)+(i4*i4) | ||
99 | inputVal1 = _mm256_permute2f128_ps(input1, input2, 0x20); | ||
100 | inputVal2 = _mm256_permute2f128_ps(input1, input2, 0x31); | ||
101 | |||
102 | power = _mm256_hadd_ps(inputVal1, inputVal2); | ||
103 | |||
104 | // Divide by the rbw | ||
105 | power = _mm256_mul_ps(power, invRBW); | ||
106 | |||
107 | // Calculate the natural log power | ||
108 | power = logf4(power); | ||
109 | |||
110 | // Convert to log10 and multiply by 10.0 | ||
111 | power = _mm256_mul_ps(power, magScalar); | ||
112 | |||
113 | // Store the floating point results | ||
114 | _mm256_store_ps(destPtr, power); | ||
115 | |||
116 | destPtr += 8; | ||
117 | } | ||
118 | |||
119 | number = eighthPoints * 8; | ||
120 | #endif /* LV_HAVE_LIB_SIMDMATH */ | ||
121 | // Calculate the FFT for any remaining points | ||
122 |
2/2✓ Branch 0 taken 262142 times.
✓ Branch 1 taken 2 times.
|
262144 | for (; number < num_points; number++) { |
123 | // Calculate dBm | ||
124 | // 50 ohm load assumption | ||
125 | // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10) | ||
126 | // 75 ohm load assumption | ||
127 | // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15) | ||
128 | |||
129 | 262142 | const float real = *inputPtr++ * iNormalizationFactor; | |
130 | 262142 | const float imag = *inputPtr++ * iNormalizationFactor; | |
131 | |||
132 | 262142 | *destPtr = volk_log2to10factor * | |
133 | 262142 | log2f_non_ieee((((real * real) + (imag * imag))) * iRBW); | |
134 | 262142 | destPtr++; | |
135 | } | ||
136 | 2 | } | |
137 | #endif /* LV_HAVE_AVX */ | ||
138 | |||
139 | #ifdef LV_HAVE_SSE3 | ||
140 | #include <pmmintrin.h> | ||
141 | |||
142 | |||
143 | #ifdef LV_HAVE_LIB_SIMDMATH | ||
144 | #include <simdmath.h> | ||
145 | #endif /* LV_HAVE_LIB_SIMDMATH */ | ||
146 | |||
147 | static inline void | ||
148 | 2 | volk_32fc_s32f_x2_power_spectral_density_32f_a_sse3(float* logPowerOutput, | |
149 | const lv_32fc_t* complexFFTInput, | ||
150 | const float normalizationFactor, | ||
151 | const float rbw, | ||
152 | unsigned int num_points) | ||
153 | { | ||
154 | 2 | const float* inputPtr = (const float*)complexFFTInput; | |
155 | 2 | float* destPtr = logPowerOutput; | |
156 | 2 | uint64_t number = 0; | |
157 | 2 | const float iRBW = 1.0 / rbw; | |
158 | 2 | const float iNormalizationFactor = 1.0 / normalizationFactor; | |
159 | |||
160 | #ifdef LV_HAVE_LIB_SIMDMATH | ||
161 | __m128 magScalar = _mm_set_ps1(10.0); | ||
162 | magScalar = _mm_div_ps(magScalar, logf4(magScalar)); | ||
163 | |||
164 | __m128 invRBW = _mm_set_ps1(iRBW); | ||
165 | |||
166 | __m128 invNormalizationFactor = _mm_set_ps1(iNormalizationFactor); | ||
167 | |||
168 | __m128 power; | ||
169 | __m128 input1, input2; | ||
170 | const uint64_t quarterPoints = num_points / 4; | ||
171 | for (; number < quarterPoints; number++) { | ||
172 | // Load the complex values | ||
173 | input1 = _mm_load_ps(inputPtr); | ||
174 | inputPtr += 4; | ||
175 | input2 = _mm_load_ps(inputPtr); | ||
176 | inputPtr += 4; | ||
177 | |||
178 | // Apply the normalization factor | ||
179 | input1 = _mm_mul_ps(input1, invNormalizationFactor); | ||
180 | input2 = _mm_mul_ps(input2, invNormalizationFactor); | ||
181 | |||
182 | // Multiply each value by itself | ||
183 | // (r1*r1), (i1*i1), (r2*r2), (i2*i2) | ||
184 | input1 = _mm_mul_ps(input1, input1); | ||
185 | // (r3*r3), (i3*i3), (r4*r4), (i4*i4) | ||
186 | input2 = _mm_mul_ps(input2, input2); | ||
187 | |||
188 | // Horizontal add, to add (r*r) + (i*i) for each complex value | ||
189 | // (r1*r1)+(i1*i1), (r2*r2) + (i2*i2), (r3*r3)+(i3*i3), (r4*r4)+(i4*i4) | ||
190 | power = _mm_hadd_ps(input1, input2); | ||
191 | |||
192 | // Divide by the rbw | ||
193 | power = _mm_mul_ps(power, invRBW); | ||
194 | |||
195 | // Calculate the natural log power | ||
196 | power = logf4(power); | ||
197 | |||
198 | // Convert to log10 and multiply by 10.0 | ||
199 | power = _mm_mul_ps(power, magScalar); | ||
200 | |||
201 | // Store the floating point results | ||
202 | _mm_store_ps(destPtr, power); | ||
203 | |||
204 | destPtr += 4; | ||
205 | } | ||
206 | |||
207 | number = quarterPoints * 4; | ||
208 | #endif /* LV_HAVE_LIB_SIMDMATH */ | ||
209 | // Calculate the FFT for any remaining points | ||
210 |
2/2✓ Branch 0 taken 262142 times.
✓ Branch 1 taken 2 times.
|
262144 | for (; number < num_points; number++) { |
211 | // Calculate dBm | ||
212 | // 50 ohm load assumption | ||
213 | // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10) | ||
214 | // 75 ohm load assumption | ||
215 | // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15) | ||
216 | |||
217 | 262142 | const float real = *inputPtr++ * iNormalizationFactor; | |
218 | 262142 | const float imag = *inputPtr++ * iNormalizationFactor; | |
219 | |||
220 | 262142 | *destPtr = volk_log2to10factor * | |
221 | 262142 | log2f_non_ieee((((real * real) + (imag * imag))) * iRBW); | |
222 | 262142 | destPtr++; | |
223 | } | ||
224 | 2 | } | |
225 | #endif /* LV_HAVE_SSE3 */ | ||
226 | |||
227 | |||
228 | #ifdef LV_HAVE_GENERIC | ||
229 | |||
230 | static inline void | ||
231 | 2 | volk_32fc_s32f_x2_power_spectral_density_32f_generic(float* logPowerOutput, | |
232 | const lv_32fc_t* complexFFTInput, | ||
233 | const float normalizationFactor, | ||
234 | const float rbw, | ||
235 | unsigned int num_points) | ||
236 | { | ||
237 |
1/2✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
|
2 | if (rbw != 1.0) |
238 | 2 | volk_32fc_s32f_power_spectrum_32f( | |
239 | 2 | logPowerOutput, complexFFTInput, normalizationFactor * sqrt(rbw), num_points); | |
240 | else | ||
241 | ✗ | volk_32fc_s32f_power_spectrum_32f( | |
242 | logPowerOutput, complexFFTInput, normalizationFactor, num_points); | ||
243 | 2 | } | |
244 | |||
245 | #endif /* LV_HAVE_GENERIC */ | ||
246 | |||
247 | #endif /* INCLUDED_volk_32fc_s32f_x2_power_spectral_density_32f_a_H */ | ||
248 |