GCC Code Coverage Report


Directory: ./
File: kernels/volk/volk_32fc_x2_conjugate_dot_prod_32fc.h
Date: 2023-10-23 23:10:04
Exec Total Coverage
Lines: 123 123 100.0%
Functions: 8 8 100.0%
Branches: 24 28 85.7%

Line Branch Exec Source
1 /* -*- c++ -*- */
2 /*
3 * Copyright 2012, 2014 Free Software Foundation, Inc.
4 *
5 * This file is part of VOLK
6 *
7 * SPDX-License-Identifier: LGPL-3.0-or-later
8 */
9
10 /*!
11 * \page volk_32fc_x2_conjugate_dot_prod_32fc
12 *
13 * \b Overview
14 *
15 * This block computes the conjugate dot product (or inner product)
16 * between two vectors, the \p input and \p taps vectors. Given a set
17 * of \p num_points taps, the result is the sum of products between
18 * the input vector and the conjugate of the taps. The result is a
19 * single value stored in the \p result address and is returned as a
20 * complex float.
21 *
22 * <b>Dispatcher Prototype</b>
23 * \code
24 * void volk_32fc_x2_conjugate_dot_prod_32fc(lv_32fc_t* result, const lv_32fc_t* input,
25 * const lv_32fc_t* taps, unsigned int num_points) \endcode
26 *
27 * \b Inputs
28 * \li input: vector of complex floats.
29 * \li taps: complex float taps.
30 * \li num_points: number of samples in both \p input and \p taps.
31 *
32 * \b Outputs
33 * \li result: pointer to a complex float value to hold the dot product result.
34 *
35 * \b Example
36 * \code
37 * unsigned int N = 1000;
38 * unsigned int alignment = volk_get_alignment();
39 *
40 * lv_32fc_t* a = (lv_32fc_t*) volk_malloc(sizeof(lv_32fc_t) * N, alignment);
41 * lv_32fc_t* b = (lv_32fc_t*) volk_malloc(sizeof(lv_32fc_t) * N, alignment);
42 *
43 * for (int i = 0; i < N; ++i) {
44 * a[i] = lv_cmake(.50f, .50f);
45 * b[i] = lv_cmake(.50f, .75f);
46 * }
47 *
48 * lv_32fc_t e = (float) N * a[0] * lv_conj(b[0]); // When a and b constant
49 * lv_32fc_t res;
50 *
51 * volk_32fc_x2_conjugate_dot_prod_32fc(&res, a, b, N);
52 *
53 * printf("Expected: %8.2f%+8.2fi\n", lv_real(e), lv_imag(e));
54 * printf("Result: %8.2f%+8.2fi\n", lv_real(res), lv_imag(res));
55 *
56 * volk_free(a);
57 * volk_free(b);
58 * \endcode
59 */
60
61 #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H
62 #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H
63
64
65 #include <volk/volk_complex.h>
66
67
68 #ifdef LV_HAVE_GENERIC
69
70 2 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_generic(lv_32fc_t* result,
71 const lv_32fc_t* input,
72 const lv_32fc_t* taps,
73 unsigned int num_points)
74 {
75 2 lv_32fc_t res = lv_cmake(0.f, 0.f);
76
2/2
✓ Branch 0 taken 262142 times.
✓ Branch 1 taken 2 times.
262144 for (unsigned int i = 0; i < num_points; ++i) {
77 262142 res += (*input++) * lv_conj((*taps++));
78 }
79 2 *result = res;
80 2 }
81
82 #endif /*LV_HAVE_GENERIC*/
83
84 #ifdef LV_HAVE_GENERIC
85
86 2 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_block(lv_32fc_t* result,
87 const lv_32fc_t* input,
88 const lv_32fc_t* taps,
89 unsigned int num_points)
90 {
91
92 2 const unsigned int num_bytes = num_points * 8;
93
94 2 float* res = (float*)result;
95 2 float* in = (float*)input;
96 2 float* tp = (float*)taps;
97 2 unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
98
99 2 float sum0[2] = { 0, 0 };
100 2 float sum1[2] = { 0, 0 };
101 2 unsigned int i = 0;
102
103
2/2
✓ Branch 0 taken 131070 times.
✓ Branch 1 taken 2 times.
131072 for (i = 0; i < n_2_ccomplex_blocks; ++i) {
104 131070 sum0[0] += in[0] * tp[0] + in[1] * tp[1];
105 131070 sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
106 131070 sum1[0] += in[2] * tp[2] + in[3] * tp[3];
107 131070 sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
108
109 131070 in += 4;
110 131070 tp += 4;
111 }
112
113 2 res[0] = sum0[0] + sum1[0];
114 2 res[1] = sum0[1] + sum1[1];
115
116
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (num_bytes >> 3 & 1) {
117 2 *result += input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]);
118 }
119 2 }
120
121 #endif /*LV_HAVE_GENERIC*/
122
123 #ifdef LV_HAVE_AVX
124
125 #include <immintrin.h>
126
127 2 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_u_avx(lv_32fc_t* result,
128 const lv_32fc_t* input,
129 const lv_32fc_t* taps,
130 unsigned int num_points)
131 {
132 // Partial sums for indices i, i+1, i+2 and i+3.
133 2 __m256 sum_a_mult_b_real = _mm256_setzero_ps();
134 2 __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
135
136
2/2
✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
65536 for (long unsigned i = 0; i < (num_points & ~3u); i += 4) {
137 /* Four complex elements a time are processed.
138 * (ar + j⋅ai)*conj(br + j⋅bi) =
139 * ar⋅br + ai⋅bi + j⋅(ai⋅br − ar⋅bi)
140 */
141
142 /* Load input and taps, split and duplicate real und imaginary parts of taps.
143 * a: | ai,i+3 | ar,i+3 | … | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
144 * b: | bi,i+3 | br,i+3 | … | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
145 * b_real: | br,i+3 | br,i+3 | … | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
146 * b_imag: | bi,i+3 | bi,i+3 | … | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
147 */
148 65534 __m256 a = _mm256_loadu_ps((const float*)&input[i]);
149 131068 __m256 b = _mm256_loadu_ps((const float*)&taps[i]);
150 65534 __m256 b_real = _mm256_moveldup_ps(b);
151 65534 __m256 b_imag = _mm256_movehdup_ps(b);
152
153 // Add | ai⋅br,i+3 | ar⋅br,i+3 | … | ai⋅br,i+0 | ar⋅br,i+0 | to partial sum.
154 131068 sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
155 // Add | ai⋅bi,i+3 | −ar⋅bi,i+3 | … | ai⋅bi,i+0 | −ar⋅bi,i+0 | to partial sum.
156 131068 sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
157 }
158
159 // Swap position of −ar⋅bi and ai⋅bi.
160 2 sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
161 // | ai⋅br + ai⋅bi | ai⋅br − ar⋅bi |, sum contains four such partial sums.
162 2 __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
163 /* Sum the four partial sums: Add high half of vector sum to the low one, i.e.
164 * s1 + s3 and s0 + s2 …
165 */
166 2 sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
167 // … and now (s0 + s2) + (s1 + s3)
168 2 sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
169 // Store result.
170 2 __m128 lower = _mm256_extractf128_ps(sum, 0);
171 _mm_storel_pi((__m64*)result, lower);
172
173 // Handle the last elements if num_points mod 4 is bigger than 0.
174
2/2
✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
8 for (long unsigned i = num_points & ~3u; i < num_points; ++i) {
175 6 *result += lv_cmake(lv_creal(input[i]) * lv_creal(taps[i]) +
176 lv_cimag(input[i]) * lv_cimag(taps[i]),
177 lv_cimag(input[i]) * lv_creal(taps[i]) -
178 lv_creal(input[i]) * lv_cimag(taps[i]));
179 }
180 2 }
181
182 #endif /* LV_HAVE_AVX */
183
184 #ifdef LV_HAVE_SSE3
185
186 #include <pmmintrin.h>
187 #include <xmmintrin.h>
188
189 2 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_u_sse3(lv_32fc_t* result,
190 const lv_32fc_t* input,
191 const lv_32fc_t* taps,
192 unsigned int num_points)
193 {
194 // Partial sums for indices i and i+1.
195 2 __m128 sum_a_mult_b_real = _mm_setzero_ps();
196 2 __m128 sum_a_mult_b_imag = _mm_setzero_ps();
197
198
2/2
✓ Branch 0 taken 131070 times.
✓ Branch 1 taken 2 times.
131072 for (long unsigned i = 0; i < (num_points & ~1u); i += 2) {
199 /* Two complex elements a time are processed.
200 * (ar + j⋅ai)*conj(br + j⋅bi) =
201 * ar⋅br + ai⋅bi + j⋅(ai⋅br − ar⋅bi)
202 */
203
204 /* Load input and taps, split and duplicate real und imaginary parts of taps.
205 * a: | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
206 * b: | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
207 * b_real: | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
208 * b_imag: | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
209 */
210 131070 __m128 a = _mm_loadu_ps((const float*)&input[i]);
211 262140 __m128 b = _mm_loadu_ps((const float*)&taps[i]);
212 131070 __m128 b_real = _mm_moveldup_ps(b);
213 131070 __m128 b_imag = _mm_movehdup_ps(b);
214
215 // Add | ai⋅br,i+1 | ar⋅br,i+1 | ai⋅br,i+0 | ar⋅br,i+0 | to partial sum.
216 262140 sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
217 // Add | ai⋅bi,i+1 | −ar⋅bi,i+1 | ai⋅bi,i+0 | −ar⋅bi,i+0 | to partial sum.
218 262140 sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
219 }
220
221 // Swap position of −ar⋅bi and ai⋅bi.
222 sum_a_mult_b_imag =
223 2 _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
224 // | ai⋅br + ai⋅bi | ai⋅br − ar⋅bi |, sum contains two such partial sums.
225 2 __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
226 // Sum the two partial sums.
227 4 sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
228 // Store result.
229 _mm_storel_pi((__m64*)result, sum);
230
231 // Handle the last element if num_points mod 2 is 1.
232
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (num_points & 1u) {
233 2 *result += lv_cmake(
234 lv_creal(input[num_points - 1]) * lv_creal(taps[num_points - 1]) +
235 lv_cimag(input[num_points - 1]) * lv_cimag(taps[num_points - 1]),
236 lv_cimag(input[num_points - 1]) * lv_creal(taps[num_points - 1]) -
237 lv_creal(input[num_points - 1]) * lv_cimag(taps[num_points - 1]));
238 }
239 2 }
240
241 #endif /*LV_HAVE_SSE3*/
242
243 #ifdef LV_HAVE_NEON
244 #include <arm_neon.h>
245 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_neon(lv_32fc_t* result,
246 const lv_32fc_t* input,
247 const lv_32fc_t* taps,
248 unsigned int num_points)
249 {
250
251 unsigned int quarter_points = num_points / 4;
252 unsigned int number;
253
254 lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
255 lv_32fc_t* b_ptr = (lv_32fc_t*)input;
256 // for 2-lane vectors, 1st lane holds the real part,
257 // 2nd lane holds the imaginary part
258 float32x4x2_t a_val, b_val, accumulator;
259 float32x4x2_t tmp_imag;
260 accumulator.val[0] = vdupq_n_f32(0);
261 accumulator.val[1] = vdupq_n_f32(0);
262
263 for (number = 0; number < quarter_points; ++number) {
264 a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
265 b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
266 __VOLK_PREFETCH(a_ptr + 8);
267 __VOLK_PREFETCH(b_ptr + 8);
268
269 // do the first multiply
270 tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
271 tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
272
273 // use multiply accumulate/subtract to get result
274 tmp_imag.val[1] = vmlsq_f32(tmp_imag.val[1], a_val.val[0], b_val.val[1]);
275 tmp_imag.val[0] = vmlaq_f32(tmp_imag.val[0], a_val.val[1], b_val.val[1]);
276
277 accumulator.val[0] = vaddq_f32(accumulator.val[0], tmp_imag.val[0]);
278 accumulator.val[1] = vaddq_f32(accumulator.val[1], tmp_imag.val[1]);
279
280 // increment pointers
281 a_ptr += 4;
282 b_ptr += 4;
283 }
284 lv_32fc_t accum_result[4];
285 vst2q_f32((float*)accum_result, accumulator);
286 *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
287
288 // tail case
289 for (number = quarter_points * 4; number < num_points; ++number) {
290 *result += (*a_ptr++) * lv_conj(*b_ptr++);
291 }
292 *result = lv_conj(*result);
293 }
294 #endif /*LV_HAVE_NEON*/
295
296 #endif /*INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H*/
297
298 #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H
299 #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H
300
301 #include <stdio.h>
302 #include <volk/volk_common.h>
303 #include <volk/volk_complex.h>
304
305
306 #ifdef LV_HAVE_AVX
307 #include <immintrin.h>
308
309 2 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_avx(lv_32fc_t* result,
310 const lv_32fc_t* input,
311 const lv_32fc_t* taps,
312 unsigned int num_points)
313 {
314 // Partial sums for indices i, i+1, i+2 and i+3.
315 2 __m256 sum_a_mult_b_real = _mm256_setzero_ps();
316 2 __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
317
318
2/2
✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
65536 for (long unsigned i = 0; i < (num_points & ~3u); i += 4) {
319 /* Four complex elements a time are processed.
320 * (ar + j⋅ai)*conj(br + j⋅bi) =
321 * ar⋅br + ai⋅bi + j⋅(ai⋅br − ar⋅bi)
322 */
323
324 /* Load input and taps, split and duplicate real und imaginary parts of taps.
325 * a: | ai,i+3 | ar,i+3 | … | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
326 * b: | bi,i+3 | br,i+3 | … | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
327 * b_real: | br,i+3 | br,i+3 | … | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
328 * b_imag: | bi,i+3 | bi,i+3 | … | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
329 */
330 65534 __m256 a = _mm256_load_ps((const float*)&input[i]);
331 131068 __m256 b = _mm256_load_ps((const float*)&taps[i]);
332 65534 __m256 b_real = _mm256_moveldup_ps(b);
333 65534 __m256 b_imag = _mm256_movehdup_ps(b);
334
335 // Add | ai⋅br,i+3 | ar⋅br,i+3 | … | ai⋅br,i+0 | ar⋅br,i+0 | to partial sum.
336 131068 sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
337 // Add | ai⋅bi,i+3 | −ar⋅bi,i+3 | … | ai⋅bi,i+0 | −ar⋅bi,i+0 | to partial sum.
338 131068 sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
339 }
340
341 // Swap position of −ar⋅bi and ai⋅bi.
342 2 sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
343 // | ai⋅br + ai⋅bi | ai⋅br − ar⋅bi |, sum contains four such partial sums.
344 2 __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
345 /* Sum the four partial sums: Add high half of vector sum to the low one, i.e.
346 * s1 + s3 and s0 + s2 …
347 */
348 2 sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
349 // … and now (s0 + s2) + (s1 + s3)
350 2 sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
351 // Store result.
352 2 __m128 lower = _mm256_extractf128_ps(sum, 0);
353 _mm_storel_pi((__m64*)result, lower);
354
355 // Handle the last elements if num_points mod 4 is bigger than 0.
356
2/2
✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
8 for (long unsigned i = num_points & ~3u; i < num_points; ++i) {
357 6 *result += lv_cmake(lv_creal(input[i]) * lv_creal(taps[i]) +
358 lv_cimag(input[i]) * lv_cimag(taps[i]),
359 lv_cimag(input[i]) * lv_creal(taps[i]) -
360 lv_creal(input[i]) * lv_cimag(taps[i]));
361 }
362 2 }
363 #endif /* LV_HAVE_AVX */
364
365 #ifdef LV_HAVE_SSE3
366
367 #include <pmmintrin.h>
368 #include <xmmintrin.h>
369
370 2 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse3(lv_32fc_t* result,
371 const lv_32fc_t* input,
372 const lv_32fc_t* taps,
373 unsigned int num_points)
374 {
375 // Partial sums for indices i and i+1.
376 2 __m128 sum_a_mult_b_real = _mm_setzero_ps();
377 2 __m128 sum_a_mult_b_imag = _mm_setzero_ps();
378
379
2/2
✓ Branch 0 taken 131070 times.
✓ Branch 1 taken 2 times.
131072 for (long unsigned i = 0; i < (num_points & ~1u); i += 2) {
380 /* Two complex elements a time are processed.
381 * (ar + j⋅ai)*conj(br + j⋅bi) =
382 * ar⋅br + ai⋅bi + j⋅(ai⋅br − ar⋅bi)
383 */
384
385 /* Load input and taps, split and duplicate real und imaginary parts of taps.
386 * a: | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
387 * b: | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
388 * b_real: | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
389 * b_imag: | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
390 */
391 131070 __m128 a = _mm_load_ps((const float*)&input[i]);
392 262140 __m128 b = _mm_load_ps((const float*)&taps[i]);
393 131070 __m128 b_real = _mm_moveldup_ps(b);
394 131070 __m128 b_imag = _mm_movehdup_ps(b);
395
396 // Add | ai⋅br,i+1 | ar⋅br,i+1 | ai⋅br,i+0 | ar⋅br,i+0 | to partial sum.
397 262140 sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
398 // Add | ai⋅bi,i+1 | −ar⋅bi,i+1 | ai⋅bi,i+0 | −ar⋅bi,i+0 | to partial sum.
399 262140 sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
400 }
401
402 // Swap position of −ar⋅bi and ai⋅bi.
403 sum_a_mult_b_imag =
404 2 _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
405 // | ai⋅br + ai⋅bi | ai⋅br − ar⋅bi |, sum contains two such partial sums.
406 2 __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
407 // Sum the two partial sums.
408 4 sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
409 // Store result.
410 _mm_storel_pi((__m64*)result, sum);
411
412 // Handle the last element if num_points mod 2 is 1.
413
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (num_points & 1u) {
414 2 *result += lv_cmake(
415 lv_creal(input[num_points - 1]) * lv_creal(taps[num_points - 1]) +
416 lv_cimag(input[num_points - 1]) * lv_cimag(taps[num_points - 1]),
417 lv_cimag(input[num_points - 1]) * lv_creal(taps[num_points - 1]) -
418 lv_creal(input[num_points - 1]) * lv_cimag(taps[num_points - 1]));
419 }
420 2 }
421
422 #endif /*LV_HAVE_SSE3*/
423
424
425 #ifdef LV_HAVE_GENERIC
426
427
428 2 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_generic(lv_32fc_t* result,
429 const lv_32fc_t* input,
430 const lv_32fc_t* taps,
431 unsigned int num_points)
432 {
433
434 2 const unsigned int num_bytes = num_points * 8;
435
436 2 float* res = (float*)result;
437 2 float* in = (float*)input;
438 2 float* tp = (float*)taps;
439 2 unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
440
441 2 float sum0[2] = { 0, 0 };
442 2 float sum1[2] = { 0, 0 };
443 2 unsigned int i = 0;
444
445
2/2
✓ Branch 0 taken 131070 times.
✓ Branch 1 taken 2 times.
131072 for (i = 0; i < n_2_ccomplex_blocks; ++i) {
446 131070 sum0[0] += in[0] * tp[0] + in[1] * tp[1];
447 131070 sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
448 131070 sum1[0] += in[2] * tp[2] + in[3] * tp[3];
449 131070 sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
450
451 131070 in += 4;
452 131070 tp += 4;
453 }
454
455 2 res[0] = sum0[0] + sum1[0];
456 2 res[1] = sum0[1] + sum1[1];
457
458
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (num_bytes >> 3 & 1) {
459 2 *result += input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]);
460 }
461 2 }
462
463 #endif /*LV_HAVE_GENERIC*/
464
465
466 #if LV_HAVE_SSE && LV_HAVE_64
467
468 2 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse(lv_32fc_t* result,
469 const lv_32fc_t* input,
470 const lv_32fc_t* taps,
471 unsigned int num_points)
472 {
473
474 2 const unsigned int num_bytes = num_points * 8;
475
476 __VOLK_ATTR_ALIGNED(16)
477 static const uint32_t conjugator[4] = {
478 0x00000000, 0x80000000, 0x00000000, 0x80000000
479 };
480
481 2 __VOLK_ASM __VOLK_VOLATILE(
482 "# ccomplex_conjugate_dotprod_generic (float* result, const float *input,\n\t"
483 "# const float *taps, unsigned num_bytes)\n\t"
484 "# float sum0 = 0;\n\t"
485 "# float sum1 = 0;\n\t"
486 "# float sum2 = 0;\n\t"
487 "# float sum3 = 0;\n\t"
488 "# do {\n\t"
489 "# sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
490 "# sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
491 "# sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
492 "# sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
493 "# input += 4;\n\t"
494 "# taps += 4; \n\t"
495 "# } while (--n_2_ccomplex_blocks != 0);\n\t"
496 "# result[0] = sum0 + sum2;\n\t"
497 "# result[1] = sum1 + sum3;\n\t"
498 "# TODO: prefetch and better scheduling\n\t"
499 " xor %%r9, %%r9\n\t"
500 " xor %%r10, %%r10\n\t"
501 " movq %[conjugator], %%r9\n\t"
502 " movq %%rcx, %%rax\n\t"
503 " movaps 0(%%r9), %%xmm8\n\t"
504 " movq %%rcx, %%r8\n\t"
505 " movq %[rsi], %%r9\n\t"
506 " movq %[rdx], %%r10\n\t"
507 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t"
508 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t"
509 " shr $5, %%rax # rax = n_2_ccomplex_blocks / 2\n\t"
510 " shr $4, %%r8\n\t"
511 " xorps %%xmm8, %%xmm2\n\t"
512 " jmp .%=L1_test\n\t"
513 " # 4 taps / loop\n\t"
514 " # something like ?? cycles / loop\n\t"
515 ".%=Loop1: \n\t"
516 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
517 "# movaps (%%r9), %%xmmA\n\t"
518 "# movaps (%%r10), %%xmmB\n\t"
519 "# movaps %%xmmA, %%xmmZ\n\t"
520 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t"
521 "# mulps %%xmmB, %%xmmA\n\t"
522 "# mulps %%xmmZ, %%xmmB\n\t"
523 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
524 "# xorps %%xmmPN, %%xmmA\n\t"
525 "# movaps %%xmmA, %%xmmZ\n\t"
526 "# unpcklps %%xmmB, %%xmmA\n\t"
527 "# unpckhps %%xmmB, %%xmmZ\n\t"
528 "# movaps %%xmmZ, %%xmmY\n\t"
529 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t"
530 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t"
531 "# addps %%xmmZ, %%xmmA\n\t"
532 "# addps %%xmmA, %%xmmC\n\t"
533 "# A=xmm0, B=xmm2, Z=xmm4\n\t"
534 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
535 " movaps 0(%%r9), %%xmm0\n\t"
536 " movaps 16(%%r9), %%xmm1\n\t"
537 " movaps %%xmm0, %%xmm4\n\t"
538 " movaps 0(%%r10), %%xmm2\n\t"
539 " xorps %%xmm8, %%xmm2\n\t"
540 " mulps %%xmm2, %%xmm0\n\t"
541 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
542 " movaps 16(%%r10), %%xmm3\n\t"
543 " movaps %%xmm1, %%xmm5\n\t"
544 " xorps %%xmm8, %%xmm3\n\t"
545 " addps %%xmm0, %%xmm6\n\t"
546 " mulps %%xmm3, %%xmm1\n\t"
547 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t"
548 " addps %%xmm1, %%xmm6\n\t"
549 " mulps %%xmm4, %%xmm2\n\t"
550 " addps %%xmm2, %%xmm7\n\t"
551 " mulps %%xmm5, %%xmm3\n\t"
552 " add $32, %%r9\n\t"
553 " addps %%xmm3, %%xmm7\n\t"
554 " add $32, %%r10\n\t"
555 ".%=L1_test:\n\t"
556 " dec %%rax\n\t"
557 " jge .%=Loop1\n\t"
558 " # We've handled the bulk of multiplies up to here.\n\t"
559 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
560 " # If so, we've got 2 more taps to do.\n\t"
561 " and $1, %%r8\n\t"
562 " je .%=Leven\n\t"
563 " # The count was odd, do 2 more taps.\n\t"
564 " # Note that we've already got mm0/mm2 preloaded\n\t"
565 " # from the main loop.\n\t"
566 " movaps 0(%%r9), %%xmm0\n\t"
567 " movaps %%xmm0, %%xmm4\n\t"
568 " movaps 0(%%r10), %%xmm2\n\t"
569 " xorps %%xmm8, %%xmm2\n\t"
570 " mulps %%xmm2, %%xmm0\n\t"
571 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
572 " addps %%xmm0, %%xmm6\n\t"
573 " mulps %%xmm4, %%xmm2\n\t"
574 " addps %%xmm2, %%xmm7\n\t"
575 ".%=Leven:\n\t"
576 " # neg inversor\n\t"
577 " xorps %%xmm1, %%xmm1\n\t"
578 " mov $0x80000000, %%r9\n\t"
579 " movd %%r9, %%xmm1\n\t"
580 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t"
581 " # pfpnacc\n\t"
582 " xorps %%xmm1, %%xmm6\n\t"
583 " movaps %%xmm6, %%xmm2\n\t"
584 " unpcklps %%xmm7, %%xmm6\n\t"
585 " unpckhps %%xmm7, %%xmm2\n\t"
586 " movaps %%xmm2, %%xmm3\n\t"
587 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t"
588 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t"
589 " addps %%xmm2, %%xmm6\n\t"
590 " # xmm6 = r1 i2 r3 i4\n\t"
591 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t"
592 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
593 " movlps %%xmm6, (%[rdi]) # store low 2x32 bits (complex) "
594 "to memory\n\t"
595 :
596 : [rsi] "r"(input),
597 [rdx] "r"(taps),
598 "c"(num_bytes),
599 [rdi] "r"(result),
600 [conjugator] "r"(conjugator)
601 : "rax", "r8", "r9", "r10");
602
603 2 int getem = num_bytes % 16;
604
605
2/2
✓ Branch 0 taken 2 times.
✓ Branch 1 taken 2 times.
4 for (; getem > 0; getem -= 8) {
606 2 *result += (input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]));
607 }
608 2 }
609 #endif
610
611 #if LV_HAVE_SSE && LV_HAVE_32
612 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse_32(lv_32fc_t* result,
613 const lv_32fc_t* input,
614 const lv_32fc_t* taps,
615 unsigned int num_points)
616 {
617
618 const unsigned int num_bytes = num_points * 8;
619
620 __VOLK_ATTR_ALIGNED(16)
621 static const uint32_t conjugator[4] = {
622 0x00000000, 0x80000000, 0x00000000, 0x80000000
623 };
624
625 int bound = num_bytes >> 4;
626 int leftovers = num_bytes % 16;
627
628 __VOLK_ASM __VOLK_VOLATILE(
629 " #pushl %%ebp\n\t"
630 " #movl %%esp, %%ebp\n\t"
631 " #movl 12(%%ebp), %%eax # input\n\t"
632 " #movl 16(%%ebp), %%edx # taps\n\t"
633 " #movl 20(%%ebp), %%ecx # n_bytes\n\t"
634 " movaps 0(%[conjugator]), %%xmm1\n\t"
635 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t"
636 " movaps 0(%[eax]), %%xmm0\n\t"
637 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t"
638 " movaps 0(%[edx]), %%xmm2\n\t"
639 " movl %[ecx], (%[out])\n\t"
640 " shrl $5, %[ecx] # ecx = n_2_ccomplex_blocks / 2\n\t"
641
642 " xorps %%xmm1, %%xmm2\n\t"
643 " jmp .%=L1_test\n\t"
644 " # 4 taps / loop\n\t"
645 " # something like ?? cycles / loop\n\t"
646 ".%=Loop1: \n\t"
647 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
648 "# movaps (%[eax]), %%xmmA\n\t"
649 "# movaps (%[edx]), %%xmmB\n\t"
650 "# movaps %%xmmA, %%xmmZ\n\t"
651 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t"
652 "# mulps %%xmmB, %%xmmA\n\t"
653 "# mulps %%xmmZ, %%xmmB\n\t"
654 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
655 "# xorps %%xmmPN, %%xmmA\n\t"
656 "# movaps %%xmmA, %%xmmZ\n\t"
657 "# unpcklps %%xmmB, %%xmmA\n\t"
658 "# unpckhps %%xmmB, %%xmmZ\n\t"
659 "# movaps %%xmmZ, %%xmmY\n\t"
660 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t"
661 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t"
662 "# addps %%xmmZ, %%xmmA\n\t"
663 "# addps %%xmmA, %%xmmC\n\t"
664 "# A=xmm0, B=xmm2, Z=xmm4\n\t"
665 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
666 " movaps 16(%[edx]), %%xmm3\n\t"
667 " movaps %%xmm0, %%xmm4\n\t"
668 " xorps %%xmm1, %%xmm3\n\t"
669 " mulps %%xmm2, %%xmm0\n\t"
670 " movaps 16(%[eax]), %%xmm1\n\t"
671 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
672 " movaps %%xmm1, %%xmm5\n\t"
673 " addps %%xmm0, %%xmm6\n\t"
674 " mulps %%xmm3, %%xmm1\n\t"
675 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t"
676 " addps %%xmm1, %%xmm6\n\t"
677 " movaps 0(%[conjugator]), %%xmm1\n\t"
678 " mulps %%xmm4, %%xmm2\n\t"
679 " movaps 32(%[eax]), %%xmm0\n\t"
680 " addps %%xmm2, %%xmm7\n\t"
681 " mulps %%xmm5, %%xmm3\n\t"
682 " addl $32, %[eax]\n\t"
683 " movaps 32(%[edx]), %%xmm2\n\t"
684 " addps %%xmm3, %%xmm7\n\t"
685 " xorps %%xmm1, %%xmm2\n\t"
686 " addl $32, %[edx]\n\t"
687 ".%=L1_test:\n\t"
688 " decl %[ecx]\n\t"
689 " jge .%=Loop1\n\t"
690 " # We've handled the bulk of multiplies up to here.\n\t"
691 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
692 " # If so, we've got 2 more taps to do.\n\t"
693 " movl 0(%[out]), %[ecx] # n_2_ccomplex_blocks\n\t"
694 " shrl $4, %[ecx]\n\t"
695 " andl $1, %[ecx]\n\t"
696 " je .%=Leven\n\t"
697 " # The count was odd, do 2 more taps.\n\t"
698 " # Note that we've already got mm0/mm2 preloaded\n\t"
699 " # from the main loop.\n\t"
700 " movaps %%xmm0, %%xmm4\n\t"
701 " mulps %%xmm2, %%xmm0\n\t"
702 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
703 " addps %%xmm0, %%xmm6\n\t"
704 " mulps %%xmm4, %%xmm2\n\t"
705 " addps %%xmm2, %%xmm7\n\t"
706 ".%=Leven:\n\t"
707 " # neg inversor\n\t"
708 " #movl 8(%%ebp), %[eax] \n\t"
709 " xorps %%xmm1, %%xmm1\n\t"
710 " movl $0x80000000, (%[out])\n\t"
711 " movss (%[out]), %%xmm1\n\t"
712 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t"
713 " # pfpnacc\n\t"
714 " xorps %%xmm1, %%xmm6\n\t"
715 " movaps %%xmm6, %%xmm2\n\t"
716 " unpcklps %%xmm7, %%xmm6\n\t"
717 " unpckhps %%xmm7, %%xmm2\n\t"
718 " movaps %%xmm2, %%xmm3\n\t"
719 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t"
720 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t"
721 " addps %%xmm2, %%xmm6\n\t"
722 " # xmm6 = r1 i2 r3 i4\n\t"
723 " #movl 8(%%ebp), %[eax] # @result\n\t"
724 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t"
725 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
726 " movlps %%xmm6, (%[out]) # store low 2x32 bits (complex) "
727 "to memory\n\t"
728 " #popl %%ebp\n\t"
729 :
730 : [eax] "r"(input),
731 [edx] "r"(taps),
732 [ecx] "r"(num_bytes),
733 [out] "r"(result),
734 [conjugator] "r"(conjugator));
735
736 for (; leftovers > 0; leftovers -= 8) {
737 *result += (input[(bound << 1)] * lv_conj(taps[(bound << 1)]));
738 }
739 }
740 #endif /*LV_HAVE_SSE*/
741
742
743 #endif /*INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H*/
744