GCC Code Coverage Report


Directory: ./
File: kernels/volk/volk_32fc_x2_dot_prod_32fc.h
Date: 2023-10-23 23:10:04
Exec Total Coverage
Lines: 214 214 100.0%
Functions: 10 10 100.0%
Branches: 30 36 83.3%

Line Branch Exec Source
1 /* -*- c++ -*- */
2 /*
3 * Copyright 2012, 2013, 2014 Free Software Foundation, Inc.
4 *
5 * This file is part of VOLK
6 *
7 * SPDX-License-Identifier: LGPL-3.0-or-later
8 */
9
10 /*!
11 * \page volk_32fc_x2_dot_prod_32fc
12 *
13 * \b Overview
14 *
15 * This block computes the dot product (or inner product) between two
16 * vectors, the \p input and \p taps vectors. Given a set of \p
17 * num_points taps, the result is the sum of products between the two
18 * vectors. The result is a single value stored in the \p result
19 * address and is returned as a complex float.
20 *
21 * <b>Dispatcher Prototype</b>
22 * \code
23 * void volk_32fc_x2_dot_prod_32fc(lv_32fc_t* result, const lv_32fc_t* input, const
24 * lv_32fc_t* taps, unsigned int num_points) \endcode
25 *
26 * \b Inputs
27 * \li input: vector of complex floats.
28 * \li taps: complex float taps.
29 * \li num_points: number of samples in both \p input and \p taps.
30 *
31 * \b Outputs
32 * \li result: pointer to a complex float value to hold the dot product result.
33 *
34 * \b Example
35 * \code
36 * int N = 10000;
37 *
38 * <FIXME>
39 *
40 * volk_32fc_x2_dot_prod_32fc();
41 *
42 * \endcode
43 */
44
45 #ifndef INCLUDED_volk_32fc_x2_dot_prod_32fc_u_H
46 #define INCLUDED_volk_32fc_x2_dot_prod_32fc_u_H
47
48 #include <stdio.h>
49 #include <string.h>
50 #include <volk/volk_common.h>
51 #include <volk/volk_complex.h>
52
53
54 #ifdef LV_HAVE_RISCV64
55 extern void volk_32fc_x2_dot_prod_32fc_sifive_u74(lv_32fc_t* result,
56 const lv_32fc_t* input,
57 const lv_32fc_t* taps,
58 unsigned int num_points);
59 #endif
60
61 #ifdef LV_HAVE_GENERIC
62
63
64 2 static inline void volk_32fc_x2_dot_prod_32fc_generic(lv_32fc_t* result,
65 const lv_32fc_t* input,
66 const lv_32fc_t* taps,
67 unsigned int num_points)
68 {
69
70 2 float* res = (float*)result;
71 2 float* in = (float*)input;
72 2 float* tp = (float*)taps;
73 2 unsigned int n_2_ccomplex_blocks = num_points / 2;
74
75 2 float sum0[2] = { 0, 0 };
76 2 float sum1[2] = { 0, 0 };
77 2 unsigned int i = 0;
78
79
2/2
✓ Branch 0 taken 131070 times.
✓ Branch 1 taken 2 times.
131072 for (i = 0; i < n_2_ccomplex_blocks; ++i) {
80 131070 sum0[0] += in[0] * tp[0] - in[1] * tp[1];
81 131070 sum0[1] += in[0] * tp[1] + in[1] * tp[0];
82 131070 sum1[0] += in[2] * tp[2] - in[3] * tp[3];
83 131070 sum1[1] += in[2] * tp[3] + in[3] * tp[2];
84
85 131070 in += 4;
86 131070 tp += 4;
87 }
88
89 2 res[0] = sum0[0] + sum1[0];
90 2 res[1] = sum0[1] + sum1[1];
91
92 // Cleanup if we had an odd number of points
93
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (num_points & 1) {
94 2 *result += input[num_points - 1] * taps[num_points - 1];
95 }
96 2 }
97
98 #endif /*LV_HAVE_GENERIC*/
99
100
101 #if LV_HAVE_SSE && LV_HAVE_64
102
103 2 static inline void volk_32fc_x2_dot_prod_32fc_u_sse_64(lv_32fc_t* result,
104 const lv_32fc_t* input,
105 const lv_32fc_t* taps,
106 unsigned int num_points)
107 {
108
109 2 const unsigned int num_bytes = num_points * 8;
110 2 unsigned int isodd = num_points & 1;
111
112 2 __VOLK_ASM(
113 "# ccomplex_dotprod_generic (float* result, const float *input,\n\t"
114 "# const float *taps, unsigned num_bytes)\n\t"
115 "# float sum0 = 0;\n\t"
116 "# float sum1 = 0;\n\t"
117 "# float sum2 = 0;\n\t"
118 "# float sum3 = 0;\n\t"
119 "# do {\n\t"
120 "# sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
121 "# sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
122 "# sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
123 "# sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
124 "# input += 4;\n\t"
125 "# taps += 4; \n\t"
126 "# } while (--n_2_ccomplex_blocks != 0);\n\t"
127 "# result[0] = sum0 + sum2;\n\t"
128 "# result[1] = sum1 + sum3;\n\t"
129 "# TODO: prefetch and better scheduling\n\t"
130 " xor %%r9, %%r9\n\t"
131 " xor %%r10, %%r10\n\t"
132 " movq %%rcx, %%rax\n\t"
133 " movq %%rcx, %%r8\n\t"
134 " movq %[rsi], %%r9\n\t"
135 " movq %[rdx], %%r10\n\t"
136 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t"
137 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t"
138 " shr $5, %%rax # rax = n_2_ccomplex_blocks / 2\n\t"
139 " shr $4, %%r8\n\t"
140 " jmp .%=L1_test\n\t"
141 " # 4 taps / loop\n\t"
142 " # something like ?? cycles / loop\n\t"
143 ".%=Loop1: \n\t"
144 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
145 "# movups (%%r9), %%xmmA\n\t"
146 "# movups (%%r10), %%xmmB\n\t"
147 "# movups %%xmmA, %%xmmZ\n\t"
148 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t"
149 "# mulps %%xmmB, %%xmmA\n\t"
150 "# mulps %%xmmZ, %%xmmB\n\t"
151 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
152 "# xorps %%xmmPN, %%xmmA\n\t"
153 "# movups %%xmmA, %%xmmZ\n\t"
154 "# unpcklps %%xmmB, %%xmmA\n\t"
155 "# unpckhps %%xmmB, %%xmmZ\n\t"
156 "# movups %%xmmZ, %%xmmY\n\t"
157 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t"
158 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t"
159 "# addps %%xmmZ, %%xmmA\n\t"
160 "# addps %%xmmA, %%xmmC\n\t"
161 "# A=xmm0, B=xmm2, Z=xmm4\n\t"
162 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
163 " movups 0(%%r9), %%xmm0\n\t"
164 " movups 16(%%r9), %%xmm1\n\t"
165 " movups %%xmm0, %%xmm4\n\t"
166 " movups 0(%%r10), %%xmm2\n\t"
167 " mulps %%xmm2, %%xmm0\n\t"
168 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
169 " movups 16(%%r10), %%xmm3\n\t"
170 " movups %%xmm1, %%xmm5\n\t"
171 " addps %%xmm0, %%xmm6\n\t"
172 " mulps %%xmm3, %%xmm1\n\t"
173 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t"
174 " addps %%xmm1, %%xmm6\n\t"
175 " mulps %%xmm4, %%xmm2\n\t"
176 " addps %%xmm2, %%xmm7\n\t"
177 " mulps %%xmm5, %%xmm3\n\t"
178 " add $32, %%r9\n\t"
179 " addps %%xmm3, %%xmm7\n\t"
180 " add $32, %%r10\n\t"
181 ".%=L1_test:\n\t"
182 " dec %%rax\n\t"
183 " jge .%=Loop1\n\t"
184 " # We've handled the bulk of multiplies up to here.\n\t"
185 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
186 " # If so, we've got 2 more taps to do.\n\t"
187 " and $1, %%r8\n\t"
188 " je .%=Leven\n\t"
189 " # The count was odd, do 2 more taps.\n\t"
190 " movups 0(%%r9), %%xmm0\n\t"
191 " movups %%xmm0, %%xmm4\n\t"
192 " movups 0(%%r10), %%xmm2\n\t"
193 " mulps %%xmm2, %%xmm0\n\t"
194 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
195 " addps %%xmm0, %%xmm6\n\t"
196 " mulps %%xmm4, %%xmm2\n\t"
197 " addps %%xmm2, %%xmm7\n\t"
198 ".%=Leven:\n\t"
199 " # neg inversor\n\t"
200 " xorps %%xmm1, %%xmm1\n\t"
201 " mov $0x80000000, %%r9\n\t"
202 " movd %%r9, %%xmm1\n\t"
203 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t"
204 " # pfpnacc\n\t"
205 " xorps %%xmm1, %%xmm6\n\t"
206 " movups %%xmm6, %%xmm2\n\t"
207 " unpcklps %%xmm7, %%xmm6\n\t"
208 " unpckhps %%xmm7, %%xmm2\n\t"
209 " movups %%xmm2, %%xmm3\n\t"
210 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t"
211 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t"
212 " addps %%xmm2, %%xmm6\n\t"
213 " # xmm6 = r1 i2 r3 i4\n\t"
214 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t"
215 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
216 " movlps %%xmm6, (%[rdi]) # store low 2x32 bits (complex) "
217 "to memory\n\t"
218 :
219 : [rsi] "r"(input), [rdx] "r"(taps), "c"(num_bytes), [rdi] "r"(result)
220 : "rax", "r8", "r9", "r10");
221
222
223
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (isodd) {
224 2 *result += input[num_points - 1] * taps[num_points - 1];
225 }
226
227 2 return;
228 }
229
230 #endif /* LV_HAVE_SSE && LV_HAVE_64 */
231
232
233 #ifdef LV_HAVE_SSE3
234
235 #include <pmmintrin.h>
236
237 2 static inline void volk_32fc_x2_dot_prod_32fc_u_sse3(lv_32fc_t* result,
238 const lv_32fc_t* input,
239 const lv_32fc_t* taps,
240 unsigned int num_points)
241 {
242
243 lv_32fc_t dotProduct;
244 2 memset(&dotProduct, 0x0, 2 * sizeof(float));
245
246 2 unsigned int number = 0;
247 2 const unsigned int halfPoints = num_points / 2;
248 2 unsigned int isodd = num_points & 1;
249
250 __m128 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
251
252 2 const lv_32fc_t* a = input;
253 2 const lv_32fc_t* b = taps;
254
255 2 dotProdVal = _mm_setzero_ps();
256
257
2/2
✓ Branch 0 taken 131070 times.
✓ Branch 1 taken 2 times.
131072 for (; number < halfPoints; number++) {
258
259 131070 x = _mm_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
260 131070 y = _mm_loadu_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
261
262 131070 yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
263 131070 yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
264
265 131070 tmp1 = _mm_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
266
267 131070 x = _mm_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
268
269 131070 tmp2 = _mm_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
270
271 131070 z = _mm_addsub_ps(tmp1,
272 tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
273
274 dotProdVal =
275 131070 _mm_add_ps(dotProdVal, z); // Add the complex multiplication results together
276
277 131070 a += 2;
278 131070 b += 2;
279 }
280
281 __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector[2];
282
283 _mm_storeu_ps((float*)dotProductVector,
284 dotProdVal); // Store the results back into the dot product vector
285
286 2 dotProduct += (dotProductVector[0] + dotProductVector[1]);
287
288
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (isodd) {
289 2 dotProduct += input[num_points - 1] * taps[num_points - 1];
290 }
291
292 2 *result = dotProduct;
293 2 }
294
295 #endif /*LV_HAVE_SSE3*/
296
297 // #ifdef LV_HAVE_SSE4_1
298
299 // #include <smmintrin.h>
300
301 // static inline void volk_32fc_x2_dot_prod_32fc_u_sse4_1(lv_32fc_t* result,
302 // const lv_32fc_t* input,
303 // const lv_32fc_t* taps,
304 // unsigned int num_points)
305 // {
306
307 // unsigned int i = 0;
308 // const unsigned int qtr_points = num_points / 4;
309 // const unsigned int isodd = num_points & 3;
310
311 // __m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, real0, real1, im0, im1;
312 // float *p_input, *p_taps;
313 // __m64* p_result;
314
315 // p_result = (__m64*)result;
316 // p_input = (float*)input;
317 // p_taps = (float*)taps;
318
319 // static const __m128i neg = { 0x000000000000000080000000 };
320
321 // real0 = _mm_setzero_ps();
322 // real1 = _mm_setzero_ps();
323 // im0 = _mm_setzero_ps();
324 // im1 = _mm_setzero_ps();
325
326 // for (; i < qtr_points; ++i) {
327 // xmm0 = _mm_loadu_ps(p_input);
328 // xmm1 = _mm_loadu_ps(p_taps);
329
330 // p_input += 4;
331 // p_taps += 4;
332
333 // xmm2 = _mm_loadu_ps(p_input);
334 // xmm3 = _mm_loadu_ps(p_taps);
335
336 // p_input += 4;
337 // p_taps += 4;
338
339 // xmm4 = _mm_unpackhi_ps(xmm0, xmm2);
340 // xmm5 = _mm_unpackhi_ps(xmm1, xmm3);
341 // xmm0 = _mm_unpacklo_ps(xmm0, xmm2);
342 // xmm2 = _mm_unpacklo_ps(xmm1, xmm3);
343
344 // // imaginary vector from input
345 // xmm1 = _mm_unpackhi_ps(xmm0, xmm4);
346 // // real vector from input
347 // xmm3 = _mm_unpacklo_ps(xmm0, xmm4);
348 // // imaginary vector from taps
349 // xmm0 = _mm_unpackhi_ps(xmm2, xmm5);
350 // // real vector from taps
351 // xmm2 = _mm_unpacklo_ps(xmm2, xmm5);
352
353 // xmm4 = _mm_dp_ps(xmm3, xmm2, 0xf1);
354 // xmm5 = _mm_dp_ps(xmm1, xmm0, 0xf1);
355
356 // xmm6 = _mm_dp_ps(xmm3, xmm0, 0xf2);
357 // xmm7 = _mm_dp_ps(xmm1, xmm2, 0xf2);
358
359 // real0 = _mm_add_ps(xmm4, real0);
360 // real1 = _mm_add_ps(xmm5, real1);
361 // im0 = _mm_add_ps(xmm6, im0);
362 // im1 = _mm_add_ps(xmm7, im1);
363 // }
364
365 // real1 = _mm_xor_ps(real1, bit128_p(&neg)->float_vec);
366
367 // im0 = _mm_add_ps(im0, im1);
368 // real0 = _mm_add_ps(real0, real1);
369
370 // im0 = _mm_add_ps(im0, real0);
371
372 // _mm_storel_pi(p_result, im0);
373
374 // for (i = num_points - isodd; i < num_points; i++) {
375 // *result += input[i] * taps[i];
376 // }
377 // }
378
379 // #endif /*LV_HAVE_SSE4_1*/
380
381 #ifdef LV_HAVE_AVX
382
383 #include <immintrin.h>
384
385 2 static inline void volk_32fc_x2_dot_prod_32fc_u_avx(lv_32fc_t* result,
386 const lv_32fc_t* input,
387 const lv_32fc_t* taps,
388 unsigned int num_points)
389 {
390
391 2 unsigned int isodd = num_points & 3;
392 2 unsigned int i = 0;
393 lv_32fc_t dotProduct;
394 2 memset(&dotProduct, 0x0, 2 * sizeof(float));
395
396 2 unsigned int number = 0;
397 2 const unsigned int quarterPoints = num_points / 4;
398
399 __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
400
401 2 const lv_32fc_t* a = input;
402 2 const lv_32fc_t* b = taps;
403
404 2 dotProdVal = _mm256_setzero_ps();
405
406
2/2
✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
65536 for (; number < quarterPoints; number++) {
407 65534 x = _mm256_loadu_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
408 65534 y = _mm256_loadu_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
409
410 65534 yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
411 65534 yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
412
413 65534 tmp1 = _mm256_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr ...
414
415 65534 x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
416
417 65534 tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
418
419 65534 z = _mm256_addsub_ps(tmp1,
420 tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
421
422 65534 dotProdVal = _mm256_add_ps(dotProdVal,
423 z); // Add the complex multiplication results together
424
425 65534 a += 4;
426 65534 b += 4;
427 }
428
429 __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
430
431 _mm256_storeu_ps((float*)dotProductVector,
432 dotProdVal); // Store the results back into the dot product vector
433
434 2 dotProduct += (dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
435 2 dotProductVector[3]);
436
437
2/2
✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
8 for (i = num_points - isodd; i < num_points; i++) {
438 6 dotProduct += input[i] * taps[i];
439 }
440
441 2 *result = dotProduct;
442 2 }
443
444 #endif /*LV_HAVE_AVX*/
445
446 #if LV_HAVE_AVX && LV_HAVE_FMA
447 #include <immintrin.h>
448
449 2 static inline void volk_32fc_x2_dot_prod_32fc_u_avx_fma(lv_32fc_t* result,
450 const lv_32fc_t* input,
451 const lv_32fc_t* taps,
452 unsigned int num_points)
453 {
454
455 2 unsigned int isodd = num_points & 3;
456 2 unsigned int i = 0;
457 lv_32fc_t dotProduct;
458 2 memset(&dotProduct, 0x0, 2 * sizeof(float));
459
460 2 unsigned int number = 0;
461 2 const unsigned int quarterPoints = num_points / 4;
462
463 __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
464
465 2 const lv_32fc_t* a = input;
466 2 const lv_32fc_t* b = taps;
467
468 2 dotProdVal = _mm256_setzero_ps();
469
470
2/2
✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
65536 for (; number < quarterPoints; number++) {
471
472 65534 x = _mm256_loadu_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
473 65534 y = _mm256_loadu_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
474
475 65534 yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
476 65534 yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
477
478 65534 tmp1 = x;
479
480 65534 x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
481
482 65534 tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
483
484 65534 z = _mm256_fmaddsub_ps(
485 tmp1, yl, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
486
487 65534 dotProdVal = _mm256_add_ps(dotProdVal,
488 z); // Add the complex multiplication results together
489
490 65534 a += 4;
491 65534 b += 4;
492 }
493
494 __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
495
496 _mm256_storeu_ps((float*)dotProductVector,
497 dotProdVal); // Store the results back into the dot product vector
498
499 2 dotProduct += (dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
500 2 dotProductVector[3]);
501
502
2/2
✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
8 for (i = num_points - isodd; i < num_points; i++) {
503 6 dotProduct += input[i] * taps[i];
504 }
505
506 2 *result = dotProduct;
507 2 }
508
509 #endif /*LV_HAVE_AVX && LV_HAVE_FMA*/
510
511 #endif /*INCLUDED_volk_32fc_x2_dot_prod_32fc_u_H*/
512
513 #ifndef INCLUDED_volk_32fc_x2_dot_prod_32fc_a_H
514 #define INCLUDED_volk_32fc_x2_dot_prod_32fc_a_H
515
516 #include <stdio.h>
517 #include <string.h>
518 #include <volk/volk_common.h>
519 #include <volk/volk_complex.h>
520
521
522 #ifdef LV_HAVE_GENERIC
523
524
525 2 static inline void volk_32fc_x2_dot_prod_32fc_a_generic(lv_32fc_t* result,
526 const lv_32fc_t* input,
527 const lv_32fc_t* taps,
528 unsigned int num_points)
529 {
530
531 2 const unsigned int num_bytes = num_points * 8;
532
533 2 float* res = (float*)result;
534 2 float* in = (float*)input;
535 2 float* tp = (float*)taps;
536 2 unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
537
538 2 float sum0[2] = { 0, 0 };
539 2 float sum1[2] = { 0, 0 };
540 2 unsigned int i = 0;
541
542
2/2
✓ Branch 0 taken 131070 times.
✓ Branch 1 taken 2 times.
131072 for (i = 0; i < n_2_ccomplex_blocks; ++i) {
543 131070 sum0[0] += in[0] * tp[0] - in[1] * tp[1];
544 131070 sum0[1] += in[0] * tp[1] + in[1] * tp[0];
545 131070 sum1[0] += in[2] * tp[2] - in[3] * tp[3];
546 131070 sum1[1] += in[2] * tp[3] + in[3] * tp[2];
547
548 131070 in += 4;
549 131070 tp += 4;
550 }
551
552 2 res[0] = sum0[0] + sum1[0];
553 2 res[1] = sum0[1] + sum1[1];
554
555
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (num_points & 1) {
556 2 *result += input[num_points - 1] * taps[num_points - 1];
557 }
558 2 }
559
560 #endif /*LV_HAVE_GENERIC*/
561
562
563 #if LV_HAVE_SSE && LV_HAVE_64
564
565
566 2 static inline void volk_32fc_x2_dot_prod_32fc_a_sse_64(lv_32fc_t* result,
567 const lv_32fc_t* input,
568 const lv_32fc_t* taps,
569 unsigned int num_points)
570 {
571
572 2 const unsigned int num_bytes = num_points * 8;
573 2 unsigned int isodd = num_points & 1;
574
575 2 __VOLK_ASM(
576 "# ccomplex_dotprod_generic (float* result, const float *input,\n\t"
577 "# const float *taps, unsigned num_bytes)\n\t"
578 "# float sum0 = 0;\n\t"
579 "# float sum1 = 0;\n\t"
580 "# float sum2 = 0;\n\t"
581 "# float sum3 = 0;\n\t"
582 "# do {\n\t"
583 "# sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
584 "# sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
585 "# sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
586 "# sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
587 "# input += 4;\n\t"
588 "# taps += 4; \n\t"
589 "# } while (--n_2_ccomplex_blocks != 0);\n\t"
590 "# result[0] = sum0 + sum2;\n\t"
591 "# result[1] = sum1 + sum3;\n\t"
592 "# TODO: prefetch and better scheduling\n\t"
593 " xor %%r9, %%r9\n\t"
594 " xor %%r10, %%r10\n\t"
595 " movq %%rcx, %%rax\n\t"
596 " movq %%rcx, %%r8\n\t"
597 " movq %[rsi], %%r9\n\t"
598 " movq %[rdx], %%r10\n\t"
599 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t"
600 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t"
601 " shr $5, %%rax # rax = n_2_ccomplex_blocks / 2\n\t"
602 " shr $4, %%r8\n\t"
603 " jmp .%=L1_test\n\t"
604 " # 4 taps / loop\n\t"
605 " # something like ?? cycles / loop\n\t"
606 ".%=Loop1: \n\t"
607 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
608 "# movaps (%%r9), %%xmmA\n\t"
609 "# movaps (%%r10), %%xmmB\n\t"
610 "# movaps %%xmmA, %%xmmZ\n\t"
611 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t"
612 "# mulps %%xmmB, %%xmmA\n\t"
613 "# mulps %%xmmZ, %%xmmB\n\t"
614 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
615 "# xorps %%xmmPN, %%xmmA\n\t"
616 "# movaps %%xmmA, %%xmmZ\n\t"
617 "# unpcklps %%xmmB, %%xmmA\n\t"
618 "# unpckhps %%xmmB, %%xmmZ\n\t"
619 "# movaps %%xmmZ, %%xmmY\n\t"
620 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t"
621 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t"
622 "# addps %%xmmZ, %%xmmA\n\t"
623 "# addps %%xmmA, %%xmmC\n\t"
624 "# A=xmm0, B=xmm2, Z=xmm4\n\t"
625 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
626 " movaps 0(%%r9), %%xmm0\n\t"
627 " movaps 16(%%r9), %%xmm1\n\t"
628 " movaps %%xmm0, %%xmm4\n\t"
629 " movaps 0(%%r10), %%xmm2\n\t"
630 " mulps %%xmm2, %%xmm0\n\t"
631 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
632 " movaps 16(%%r10), %%xmm3\n\t"
633 " movaps %%xmm1, %%xmm5\n\t"
634 " addps %%xmm0, %%xmm6\n\t"
635 " mulps %%xmm3, %%xmm1\n\t"
636 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t"
637 " addps %%xmm1, %%xmm6\n\t"
638 " mulps %%xmm4, %%xmm2\n\t"
639 " addps %%xmm2, %%xmm7\n\t"
640 " mulps %%xmm5, %%xmm3\n\t"
641 " add $32, %%r9\n\t"
642 " addps %%xmm3, %%xmm7\n\t"
643 " add $32, %%r10\n\t"
644 ".%=L1_test:\n\t"
645 " dec %%rax\n\t"
646 " jge .%=Loop1\n\t"
647 " # We've handled the bulk of multiplies up to here.\n\t"
648 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
649 " # If so, we've got 2 more taps to do.\n\t"
650 " and $1, %%r8\n\t"
651 " je .%=Leven\n\t"
652 " # The count was odd, do 2 more taps.\n\t"
653 " movaps 0(%%r9), %%xmm0\n\t"
654 " movaps %%xmm0, %%xmm4\n\t"
655 " movaps 0(%%r10), %%xmm2\n\t"
656 " mulps %%xmm2, %%xmm0\n\t"
657 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
658 " addps %%xmm0, %%xmm6\n\t"
659 " mulps %%xmm4, %%xmm2\n\t"
660 " addps %%xmm2, %%xmm7\n\t"
661 ".%=Leven:\n\t"
662 " # neg inversor\n\t"
663 " xorps %%xmm1, %%xmm1\n\t"
664 " mov $0x80000000, %%r9\n\t"
665 " movd %%r9, %%xmm1\n\t"
666 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t"
667 " # pfpnacc\n\t"
668 " xorps %%xmm1, %%xmm6\n\t"
669 " movaps %%xmm6, %%xmm2\n\t"
670 " unpcklps %%xmm7, %%xmm6\n\t"
671 " unpckhps %%xmm7, %%xmm2\n\t"
672 " movaps %%xmm2, %%xmm3\n\t"
673 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t"
674 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t"
675 " addps %%xmm2, %%xmm6\n\t"
676 " # xmm6 = r1 i2 r3 i4\n\t"
677 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t"
678 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
679 " movlps %%xmm6, (%[rdi]) # store low 2x32 bits (complex) "
680 "to memory\n\t"
681 :
682 : [rsi] "r"(input), [rdx] "r"(taps), "c"(num_bytes), [rdi] "r"(result)
683 : "rax", "r8", "r9", "r10");
684
685
686
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (isodd) {
687 2 *result += input[num_points - 1] * taps[num_points - 1];
688 }
689
690 2 return;
691 }
692
693 #endif
694
695 #if LV_HAVE_SSE && LV_HAVE_32
696
697 static inline void volk_32fc_x2_dot_prod_32fc_a_sse_32(lv_32fc_t* result,
698 const lv_32fc_t* input,
699 const lv_32fc_t* taps,
700 unsigned int num_points)
701 {
702
703 volk_32fc_x2_dot_prod_32fc_a_generic(result, input, taps, num_points);
704
705 #if 0
706 const unsigned int num_bytes = num_points*8;
707 unsigned int isodd = num_points & 1;
708
709 __VOLK_ASM __VOLK_VOLATILE
710 (
711 " #pushl %%ebp\n\t"
712 " #movl %%esp, %%ebp\n\t"
713 " movl 12(%%ebp), %%eax # input\n\t"
714 " movl 16(%%ebp), %%edx # taps\n\t"
715 " movl 20(%%ebp), %%ecx # n_bytes\n\t"
716 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t"
717 " movaps 0(%%eax), %%xmm0\n\t"
718 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t"
719 " movaps 0(%%edx), %%xmm2\n\t"
720 " shrl $5, %%ecx # ecx = n_2_ccomplex_blocks / 2\n\t"
721 " jmp .%=L1_test\n\t"
722 " # 4 taps / loop\n\t"
723 " # something like ?? cycles / loop\n\t"
724 ".%=Loop1: \n\t"
725 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
726 "# movaps (%%eax), %%xmmA\n\t"
727 "# movaps (%%edx), %%xmmB\n\t"
728 "# movaps %%xmmA, %%xmmZ\n\t"
729 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t"
730 "# mulps %%xmmB, %%xmmA\n\t"
731 "# mulps %%xmmZ, %%xmmB\n\t"
732 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
733 "# xorps %%xmmPN, %%xmmA\n\t"
734 "# movaps %%xmmA, %%xmmZ\n\t"
735 "# unpcklps %%xmmB, %%xmmA\n\t"
736 "# unpckhps %%xmmB, %%xmmZ\n\t"
737 "# movaps %%xmmZ, %%xmmY\n\t"
738 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t"
739 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t"
740 "# addps %%xmmZ, %%xmmA\n\t"
741 "# addps %%xmmA, %%xmmC\n\t"
742 "# A=xmm0, B=xmm2, Z=xmm4\n\t"
743 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
744 " movaps 16(%%eax), %%xmm1\n\t"
745 " movaps %%xmm0, %%xmm4\n\t"
746 " mulps %%xmm2, %%xmm0\n\t"
747 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
748 " movaps 16(%%edx), %%xmm3\n\t"
749 " movaps %%xmm1, %%xmm5\n\t"
750 " addps %%xmm0, %%xmm6\n\t"
751 " mulps %%xmm3, %%xmm1\n\t"
752 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t"
753 " addps %%xmm1, %%xmm6\n\t"
754 " mulps %%xmm4, %%xmm2\n\t"
755 " movaps 32(%%eax), %%xmm0\n\t"
756 " addps %%xmm2, %%xmm7\n\t"
757 " mulps %%xmm5, %%xmm3\n\t"
758 " addl $32, %%eax\n\t"
759 " movaps 32(%%edx), %%xmm2\n\t"
760 " addps %%xmm3, %%xmm7\n\t"
761 " addl $32, %%edx\n\t"
762 ".%=L1_test:\n\t"
763 " decl %%ecx\n\t"
764 " jge .%=Loop1\n\t"
765 " # We've handled the bulk of multiplies up to here.\n\t"
766 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
767 " # If so, we've got 2 more taps to do.\n\t"
768 " movl 20(%%ebp), %%ecx # n_2_ccomplex_blocks\n\t"
769 " shrl $4, %%ecx\n\t"
770 " andl $1, %%ecx\n\t"
771 " je .%=Leven\n\t"
772 " # The count was odd, do 2 more taps.\n\t"
773 " # Note that we've already got mm0/mm2 preloaded\n\t"
774 " # from the main loop.\n\t"
775 " movaps %%xmm0, %%xmm4\n\t"
776 " mulps %%xmm2, %%xmm0\n\t"
777 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
778 " addps %%xmm0, %%xmm6\n\t"
779 " mulps %%xmm4, %%xmm2\n\t"
780 " addps %%xmm2, %%xmm7\n\t"
781 ".%=Leven:\n\t"
782 " # neg inversor\n\t"
783 " movl 8(%%ebp), %%eax \n\t"
784 " xorps %%xmm1, %%xmm1\n\t"
785 " movl $0x80000000, (%%eax)\n\t"
786 " movss (%%eax), %%xmm1\n\t"
787 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t"
788 " # pfpnacc\n\t"
789 " xorps %%xmm1, %%xmm6\n\t"
790 " movaps %%xmm6, %%xmm2\n\t"
791 " unpcklps %%xmm7, %%xmm6\n\t"
792 " unpckhps %%xmm7, %%xmm2\n\t"
793 " movaps %%xmm2, %%xmm3\n\t"
794 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t"
795 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t"
796 " addps %%xmm2, %%xmm6\n\t"
797 " # xmm6 = r1 i2 r3 i4\n\t"
798 " #movl 8(%%ebp), %%eax # @result\n\t"
799 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t"
800 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
801 " movlps %%xmm6, (%%eax) # store low 2x32 bits (complex) to memory\n\t"
802 " #popl %%ebp\n\t"
803 :
804 :
805 : "eax", "ecx", "edx"
806 );
807
808
809 int getem = num_bytes % 16;
810
811 if(isodd) {
812 *result += (input[num_points - 1] * taps[num_points - 1]);
813 }
814
815 return;
816 #endif
817 }
818
819 #endif /*LV_HAVE_SSE*/
820
821 #ifdef LV_HAVE_SSE3
822
823 #include <pmmintrin.h>
824
825 2 static inline void volk_32fc_x2_dot_prod_32fc_a_sse3(lv_32fc_t* result,
826 const lv_32fc_t* input,
827 const lv_32fc_t* taps,
828 unsigned int num_points)
829 {
830
831 2 const unsigned int num_bytes = num_points * 8;
832 2 unsigned int isodd = num_points & 1;
833
834 lv_32fc_t dotProduct;
835 2 memset(&dotProduct, 0x0, 2 * sizeof(float));
836
837 2 unsigned int number = 0;
838 2 const unsigned int halfPoints = num_bytes >> 4;
839
840 __m128 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
841
842 2 const lv_32fc_t* a = input;
843 2 const lv_32fc_t* b = taps;
844
845 2 dotProdVal = _mm_setzero_ps();
846
847
2/2
✓ Branch 0 taken 131070 times.
✓ Branch 1 taken 2 times.
131072 for (; number < halfPoints; number++) {
848
849 131070 x = _mm_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
850 131070 y = _mm_load_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
851
852 131070 yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
853 131070 yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
854
855 131070 tmp1 = _mm_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
856
857 131070 x = _mm_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
858
859 131070 tmp2 = _mm_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
860
861 131070 z = _mm_addsub_ps(tmp1,
862 tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
863
864 dotProdVal =
865 131070 _mm_add_ps(dotProdVal, z); // Add the complex multiplication results together
866
867 131070 a += 2;
868 131070 b += 2;
869 }
870
871 __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector[2];
872
873 _mm_store_ps((float*)dotProductVector,
874 dotProdVal); // Store the results back into the dot product vector
875
876 2 dotProduct += (dotProductVector[0] + dotProductVector[1]);
877
878
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (isodd) {
879 2 dotProduct += input[num_points - 1] * taps[num_points - 1];
880 }
881
882 2 *result = dotProduct;
883 2 }
884
885 #endif /*LV_HAVE_SSE3*/
886
887
888 // #ifdef LV_HAVE_SSE4_1
889
890 // #include <smmintrin.h>
891
892 // static inline void volk_32fc_x2_dot_prod_32fc_a_sse4_1(lv_32fc_t* result,
893 // const lv_32fc_t* input,
894 // const lv_32fc_t* taps,
895 // unsigned int num_points)
896 // {
897
898 // unsigned int i = 0;
899 // const unsigned int qtr_points = num_points / 4;
900 // const unsigned int isodd = num_points & 3;
901
902 // __m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, real0, real1, im0, im1;
903 // float *p_input, *p_taps;
904 // __m64* p_result;
905
906 // static const __m128i neg = { 0x000000000000000080000000 };
907
908 // p_result = (__m64*)result;
909 // p_input = (float*)input;
910 // p_taps = (float*)taps;
911
912 // real0 = _mm_setzero_ps();
913 // real1 = _mm_setzero_ps();
914 // im0 = _mm_setzero_ps();
915 // im1 = _mm_setzero_ps();
916
917 // for (; i < qtr_points; ++i) {
918 // xmm0 = _mm_load_ps(p_input);
919 // xmm1 = _mm_load_ps(p_taps);
920
921 // p_input += 4;
922 // p_taps += 4;
923
924 // xmm2 = _mm_load_ps(p_input);
925 // xmm3 = _mm_load_ps(p_taps);
926
927 // p_input += 4;
928 // p_taps += 4;
929
930 // xmm4 = _mm_unpackhi_ps(xmm0, xmm2);
931 // xmm5 = _mm_unpackhi_ps(xmm1, xmm3);
932 // xmm0 = _mm_unpacklo_ps(xmm0, xmm2);
933 // xmm2 = _mm_unpacklo_ps(xmm1, xmm3);
934
935 // // imaginary vector from input
936 // xmm1 = _mm_unpackhi_ps(xmm0, xmm4);
937 // // real vector from input
938 // xmm3 = _mm_unpacklo_ps(xmm0, xmm4);
939 // // imaginary vector from taps
940 // xmm0 = _mm_unpackhi_ps(xmm2, xmm5);
941 // // real vector from taps
942 // xmm2 = _mm_unpacklo_ps(xmm2, xmm5);
943
944 // xmm4 = _mm_dp_ps(xmm3, xmm2, 0xf1);
945 // xmm5 = _mm_dp_ps(xmm1, xmm0, 0xf1);
946
947 // xmm6 = _mm_dp_ps(xmm3, xmm0, 0xf2);
948 // xmm7 = _mm_dp_ps(xmm1, xmm2, 0xf2);
949
950 // real0 = _mm_add_ps(xmm4, real0);
951 // real1 = _mm_add_ps(xmm5, real1);
952 // im0 = _mm_add_ps(xmm6, im0);
953 // im1 = _mm_add_ps(xmm7, im1);
954 // }
955
956 // real1 = _mm_xor_ps(real1, bit128_p(&neg)->float_vec);
957
958 // im0 = _mm_add_ps(im0, im1);
959 // real0 = _mm_add_ps(real0, real1);
960
961 // im0 = _mm_add_ps(im0, real0);
962
963 // _mm_storel_pi(p_result, im0);
964
965 // for (i = num_points - isodd; i < num_points; i++) {
966 // *result += input[i] * taps[i];
967 // }
968 // }
969
970 // #endif /*LV_HAVE_SSE4_1*/
971
972 #ifdef LV_HAVE_NEON
973 #include <arm_neon.h>
974
975 static inline void volk_32fc_x2_dot_prod_32fc_neon(lv_32fc_t* result,
976 const lv_32fc_t* input,
977 const lv_32fc_t* taps,
978 unsigned int num_points)
979 {
980
981 unsigned int quarter_points = num_points / 4;
982 unsigned int number;
983
984 lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
985 lv_32fc_t* b_ptr = (lv_32fc_t*)input;
986 // for 2-lane vectors, 1st lane holds the real part,
987 // 2nd lane holds the imaginary part
988 float32x4x2_t a_val, b_val, c_val, accumulator;
989 float32x4x2_t tmp_real, tmp_imag;
990 accumulator.val[0] = vdupq_n_f32(0);
991 accumulator.val[1] = vdupq_n_f32(0);
992
993 for (number = 0; number < quarter_points; ++number) {
994 a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
995 b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
996 __VOLK_PREFETCH(a_ptr + 8);
997 __VOLK_PREFETCH(b_ptr + 8);
998
999 // multiply the real*real and imag*imag to get real result
1000 // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
1001 tmp_real.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
1002 // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
1003 tmp_real.val[1] = vmulq_f32(a_val.val[1], b_val.val[1]);
1004
1005 // Multiply cross terms to get the imaginary result
1006 // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
1007 tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[1]);
1008 // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
1009 tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
1010
1011 c_val.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
1012 c_val.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
1013
1014 accumulator.val[0] = vaddq_f32(accumulator.val[0], c_val.val[0]);
1015 accumulator.val[1] = vaddq_f32(accumulator.val[1], c_val.val[1]);
1016
1017 a_ptr += 4;
1018 b_ptr += 4;
1019 }
1020 lv_32fc_t accum_result[4];
1021 vst2q_f32((float*)accum_result, accumulator);
1022 *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
1023
1024 // tail case
1025 for (number = quarter_points * 4; number < num_points; ++number) {
1026 *result += (*a_ptr++) * (*b_ptr++);
1027 }
1028 }
1029 #endif /*LV_HAVE_NEON*/
1030
1031 #ifdef LV_HAVE_NEON
1032 #include <arm_neon.h>
1033 static inline void volk_32fc_x2_dot_prod_32fc_neon_opttests(lv_32fc_t* result,
1034 const lv_32fc_t* input,
1035 const lv_32fc_t* taps,
1036 unsigned int num_points)
1037 {
1038
1039 unsigned int quarter_points = num_points / 4;
1040 unsigned int number;
1041
1042 lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
1043 lv_32fc_t* b_ptr = (lv_32fc_t*)input;
1044 // for 2-lane vectors, 1st lane holds the real part,
1045 // 2nd lane holds the imaginary part
1046 float32x4x2_t a_val, b_val, accumulator;
1047 float32x4x2_t tmp_imag;
1048 accumulator.val[0] = vdupq_n_f32(0);
1049 accumulator.val[1] = vdupq_n_f32(0);
1050
1051 for (number = 0; number < quarter_points; ++number) {
1052 a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
1053 b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
1054 __VOLK_PREFETCH(a_ptr + 8);
1055 __VOLK_PREFETCH(b_ptr + 8);
1056
1057 // do the first multiply
1058 tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
1059 tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
1060
1061 // use multiply accumulate/subtract to get result
1062 tmp_imag.val[1] = vmlaq_f32(tmp_imag.val[1], a_val.val[0], b_val.val[1]);
1063 tmp_imag.val[0] = vmlsq_f32(tmp_imag.val[0], a_val.val[1], b_val.val[1]);
1064
1065 accumulator.val[0] = vaddq_f32(accumulator.val[0], tmp_imag.val[0]);
1066 accumulator.val[1] = vaddq_f32(accumulator.val[1], tmp_imag.val[1]);
1067
1068 // increment pointers
1069 a_ptr += 4;
1070 b_ptr += 4;
1071 }
1072 lv_32fc_t accum_result[4];
1073 vst2q_f32((float*)accum_result, accumulator);
1074 *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
1075
1076 // tail case
1077 for (number = quarter_points * 4; number < num_points; ++number) {
1078 *result += (*a_ptr++) * (*b_ptr++);
1079 }
1080 }
1081 #endif /*LV_HAVE_NEON*/
1082
1083 #ifdef LV_HAVE_NEON
1084 static inline void volk_32fc_x2_dot_prod_32fc_neon_optfma(lv_32fc_t* result,
1085 const lv_32fc_t* input,
1086 const lv_32fc_t* taps,
1087 unsigned int num_points)
1088 {
1089
1090 unsigned int quarter_points = num_points / 4;
1091 unsigned int number;
1092
1093 lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
1094 lv_32fc_t* b_ptr = (lv_32fc_t*)input;
1095 // for 2-lane vectors, 1st lane holds the real part,
1096 // 2nd lane holds the imaginary part
1097 float32x4x2_t a_val, b_val, accumulator1, accumulator2;
1098 accumulator1.val[0] = vdupq_n_f32(0);
1099 accumulator1.val[1] = vdupq_n_f32(0);
1100 accumulator2.val[0] = vdupq_n_f32(0);
1101 accumulator2.val[1] = vdupq_n_f32(0);
1102
1103 for (number = 0; number < quarter_points; ++number) {
1104 a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
1105 b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
1106 __VOLK_PREFETCH(a_ptr + 8);
1107 __VOLK_PREFETCH(b_ptr + 8);
1108
1109 // use 2 accumulators to remove inter-instruction data dependencies
1110 accumulator1.val[0] = vmlaq_f32(accumulator1.val[0], a_val.val[0], b_val.val[0]);
1111 accumulator1.val[1] = vmlaq_f32(accumulator1.val[1], a_val.val[0], b_val.val[1]);
1112 accumulator2.val[0] = vmlsq_f32(accumulator2.val[0], a_val.val[1], b_val.val[1]);
1113 accumulator2.val[1] = vmlaq_f32(accumulator2.val[1], a_val.val[1], b_val.val[0]);
1114 // increment pointers
1115 a_ptr += 4;
1116 b_ptr += 4;
1117 }
1118 accumulator1.val[0] = vaddq_f32(accumulator1.val[0], accumulator2.val[0]);
1119 accumulator1.val[1] = vaddq_f32(accumulator1.val[1], accumulator2.val[1]);
1120 lv_32fc_t accum_result[4];
1121 vst2q_f32((float*)accum_result, accumulator1);
1122 *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
1123
1124 // tail case
1125 for (number = quarter_points * 4; number < num_points; ++number) {
1126 *result += (*a_ptr++) * (*b_ptr++);
1127 }
1128 }
1129 #endif /*LV_HAVE_NEON*/
1130
1131 #ifdef LV_HAVE_NEON
1132 static inline void volk_32fc_x2_dot_prod_32fc_neon_optfmaunroll(lv_32fc_t* result,
1133 const lv_32fc_t* input,
1134 const lv_32fc_t* taps,
1135 unsigned int num_points)
1136 {
1137 // NOTE: GCC does a poor job with this kernel, but the equivalent ASM code is very
1138 // fast
1139
1140 unsigned int quarter_points = num_points / 8;
1141 unsigned int number;
1142
1143 lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
1144 lv_32fc_t* b_ptr = (lv_32fc_t*)input;
1145 // for 2-lane vectors, 1st lane holds the real part,
1146 // 2nd lane holds the imaginary part
1147 float32x4x4_t a_val, b_val, accumulator1, accumulator2;
1148 float32x4x2_t reduced_accumulator;
1149 accumulator1.val[0] = vdupq_n_f32(0);
1150 accumulator1.val[1] = vdupq_n_f32(0);
1151 accumulator1.val[2] = vdupq_n_f32(0);
1152 accumulator1.val[3] = vdupq_n_f32(0);
1153 accumulator2.val[0] = vdupq_n_f32(0);
1154 accumulator2.val[1] = vdupq_n_f32(0);
1155 accumulator2.val[2] = vdupq_n_f32(0);
1156 accumulator2.val[3] = vdupq_n_f32(0);
1157
1158 // 8 input regs, 8 accumulators -> 16/16 neon regs are used
1159 for (number = 0; number < quarter_points; ++number) {
1160 a_val = vld4q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
1161 b_val = vld4q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
1162 __VOLK_PREFETCH(a_ptr + 8);
1163 __VOLK_PREFETCH(b_ptr + 8);
1164
1165 // use 2 accumulators to remove inter-instruction data dependencies
1166 accumulator1.val[0] = vmlaq_f32(accumulator1.val[0], a_val.val[0], b_val.val[0]);
1167 accumulator1.val[1] = vmlaq_f32(accumulator1.val[1], a_val.val[0], b_val.val[1]);
1168
1169 accumulator1.val[2] = vmlaq_f32(accumulator1.val[2], a_val.val[2], b_val.val[2]);
1170 accumulator1.val[3] = vmlaq_f32(accumulator1.val[3], a_val.val[2], b_val.val[3]);
1171
1172 accumulator2.val[0] = vmlsq_f32(accumulator2.val[0], a_val.val[1], b_val.val[1]);
1173 accumulator2.val[1] = vmlaq_f32(accumulator2.val[1], a_val.val[1], b_val.val[0]);
1174
1175 accumulator2.val[2] = vmlsq_f32(accumulator2.val[2], a_val.val[3], b_val.val[3]);
1176 accumulator2.val[3] = vmlaq_f32(accumulator2.val[3], a_val.val[3], b_val.val[2]);
1177 // increment pointers
1178 a_ptr += 8;
1179 b_ptr += 8;
1180 }
1181 // reduce 8 accumulator lanes down to 2 (1 real and 1 imag)
1182 accumulator1.val[0] = vaddq_f32(accumulator1.val[0], accumulator1.val[2]);
1183 accumulator1.val[1] = vaddq_f32(accumulator1.val[1], accumulator1.val[3]);
1184 accumulator2.val[0] = vaddq_f32(accumulator2.val[0], accumulator2.val[2]);
1185 accumulator2.val[1] = vaddq_f32(accumulator2.val[1], accumulator2.val[3]);
1186 reduced_accumulator.val[0] = vaddq_f32(accumulator1.val[0], accumulator2.val[0]);
1187 reduced_accumulator.val[1] = vaddq_f32(accumulator1.val[1], accumulator2.val[1]);
1188 // now reduce accumulators to scalars
1189 lv_32fc_t accum_result[4];
1190 vst2q_f32((float*)accum_result, reduced_accumulator);
1191 *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
1192
1193 // tail case
1194 for (number = quarter_points * 8; number < num_points; ++number) {
1195 *result += (*a_ptr++) * (*b_ptr++);
1196 }
1197 }
1198 #endif /*LV_HAVE_NEON*/
1199
1200
1201 #ifdef LV_HAVE_AVX
1202
1203 #include <immintrin.h>
1204
1205 2 static inline void volk_32fc_x2_dot_prod_32fc_a_avx(lv_32fc_t* result,
1206 const lv_32fc_t* input,
1207 const lv_32fc_t* taps,
1208 unsigned int num_points)
1209 {
1210
1211 2 unsigned int isodd = num_points & 3;
1212 2 unsigned int i = 0;
1213 lv_32fc_t dotProduct;
1214 2 memset(&dotProduct, 0x0, 2 * sizeof(float));
1215
1216 2 unsigned int number = 0;
1217 2 const unsigned int quarterPoints = num_points / 4;
1218
1219 __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
1220
1221 2 const lv_32fc_t* a = input;
1222 2 const lv_32fc_t* b = taps;
1223
1224 2 dotProdVal = _mm256_setzero_ps();
1225
1226
2/2
✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
65536 for (; number < quarterPoints; number++) {
1227
1228 65534 x = _mm256_load_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
1229 65534 y = _mm256_load_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
1230
1231 65534 yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
1232 65534 yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
1233
1234 65534 tmp1 = _mm256_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr ...
1235
1236 65534 x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
1237
1238 65534 tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
1239
1240 65534 z = _mm256_addsub_ps(tmp1,
1241 tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
1242
1243 65534 dotProdVal = _mm256_add_ps(dotProdVal,
1244 z); // Add the complex multiplication results together
1245
1246 65534 a += 4;
1247 65534 b += 4;
1248 }
1249
1250 __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
1251
1252 _mm256_store_ps((float*)dotProductVector,
1253 dotProdVal); // Store the results back into the dot product vector
1254
1255 2 dotProduct += (dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
1256 2 dotProductVector[3]);
1257
1258
2/2
✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
8 for (i = num_points - isodd; i < num_points; i++) {
1259 6 dotProduct += input[i] * taps[i];
1260 }
1261
1262 2 *result = dotProduct;
1263 2 }
1264
1265 #endif /*LV_HAVE_AVX*/
1266
1267 #if LV_HAVE_AVX && LV_HAVE_FMA
1268 #include <immintrin.h>
1269
1270 2 static inline void volk_32fc_x2_dot_prod_32fc_a_avx_fma(lv_32fc_t* result,
1271 const lv_32fc_t* input,
1272 const lv_32fc_t* taps,
1273 unsigned int num_points)
1274 {
1275
1276 2 unsigned int isodd = num_points & 3;
1277 2 unsigned int i = 0;
1278 lv_32fc_t dotProduct;
1279 2 memset(&dotProduct, 0x0, 2 * sizeof(float));
1280
1281 2 unsigned int number = 0;
1282 2 const unsigned int quarterPoints = num_points / 4;
1283
1284 __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
1285
1286 2 const lv_32fc_t* a = input;
1287 2 const lv_32fc_t* b = taps;
1288
1289 2 dotProdVal = _mm256_setzero_ps();
1290
1291
2/2
✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
65536 for (; number < quarterPoints; number++) {
1292
1293 65534 x = _mm256_load_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
1294 65534 y = _mm256_load_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
1295
1296 65534 yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
1297 65534 yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
1298
1299 65534 tmp1 = x;
1300
1301 65534 x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
1302
1303 65534 tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
1304
1305 65534 z = _mm256_fmaddsub_ps(
1306 tmp1, yl, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
1307
1308 65534 dotProdVal = _mm256_add_ps(dotProdVal,
1309 z); // Add the complex multiplication results together
1310
1311 65534 a += 4;
1312 65534 b += 4;
1313 }
1314
1315 __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
1316
1317 _mm256_store_ps((float*)dotProductVector,
1318 dotProdVal); // Store the results back into the dot product vector
1319
1320 2 dotProduct += (dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
1321 2 dotProductVector[3]);
1322
1323
2/2
✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
8 for (i = num_points - isodd; i < num_points; i++) {
1324 6 dotProduct += input[i] * taps[i];
1325 }
1326
1327 2 *result = dotProduct;
1328 2 }
1329
1330 #endif /*LV_HAVE_AVX && LV_HAVE_FMA*/
1331
1332
1333 #endif /*INCLUDED_volk_32fc_x2_dot_prod_32fc_a_H*/
1334