| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /* -*- c++ -*- */ | ||
| 2 | /* | ||
| 3 | * Copyright 2012, 2014 Free Software Foundation, Inc. | ||
| 4 | * | ||
| 5 | * This file is part of VOLK | ||
| 6 | * | ||
| 7 | * SPDX-License-Identifier: LGPL-3.0-or-later | ||
| 8 | */ | ||
| 9 | |||
| 10 | /*! | ||
| 11 | * \page volk_8ic_x2_s32f_multiply_conjugate_32fc | ||
| 12 | * | ||
| 13 | * \b Overview | ||
| 14 | * | ||
| 15 | * Multiplys the one complex vector with the complex conjugate of the | ||
| 16 | * second complex vector and stores their results in the third vector | ||
| 17 | * | ||
| 18 | * <b>Dispatcher Prototype</b> | ||
| 19 | * \code | ||
| 20 | * void volk_8ic_x2_s32f_multiply_conjugate_32fc(lv_32fc_t* cVector, const lv_8sc_t* | ||
| 21 | * aVector, const lv_8sc_t* bVector, const float scalar, unsigned int num_points) \endcode | ||
| 22 | * | ||
| 23 | * \b Inputs | ||
| 24 | * \li aVector: One of the complex vectors to be multiplied. | ||
| 25 | * \li bVector: The complex vector which will be converted to complex conjugate and | ||
| 26 | * multiplied. \li scalar: each output value is scaled by 1/scalar. \li num_points: The | ||
| 27 | * number of complex values in aVector and bVector to be multiplied together and stored | ||
| 28 | * into cVector. | ||
| 29 | * | ||
| 30 | * \b Outputs | ||
| 31 | * \li cVector: The complex vector where the results will be stored. | ||
| 32 | * | ||
| 33 | * \b Example | ||
| 34 | * \code | ||
| 35 | * int N = 10000; | ||
| 36 | * | ||
| 37 | * <FIXME> | ||
| 38 | * | ||
| 39 | * volk_8ic_x2_s32f_multiply_conjugate_32fc(); | ||
| 40 | * | ||
| 41 | * \endcode | ||
| 42 | */ | ||
| 43 | |||
| 44 | #ifndef INCLUDED_volk_8ic_x2_s32f_multiply_conjugate_32fc_a_H | ||
| 45 | #define INCLUDED_volk_8ic_x2_s32f_multiply_conjugate_32fc_a_H | ||
| 46 | |||
| 47 | #include <inttypes.h> | ||
| 48 | #include <stdio.h> | ||
| 49 | #include <volk/volk_complex.h> | ||
| 50 | |||
| 51 | #ifdef LV_HAVE_AVX2 | ||
| 52 | #include <immintrin.h> | ||
| 53 | |||
| 54 | static inline void | ||
| 55 | 2 | volk_8ic_x2_s32f_multiply_conjugate_32fc_a_avx2(lv_32fc_t* cVector, | |
| 56 | const lv_8sc_t* aVector, | ||
| 57 | const lv_8sc_t* bVector, | ||
| 58 | const float scalar, | ||
| 59 | unsigned int num_points) | ||
| 60 | { | ||
| 61 | 2 | unsigned int number = 0; | |
| 62 | 2 | const unsigned int oneEigthPoints = num_points / 8; | |
| 63 | |||
| 64 | __m256i x, y, realz, imagz; | ||
| 65 | __m256 ret, retlo, rethi; | ||
| 66 | 2 | lv_32fc_t* c = cVector; | |
| 67 | 2 | const lv_8sc_t* a = aVector; | |
| 68 | 2 | const lv_8sc_t* b = bVector; | |
| 69 | __m256i conjugateSign = | ||
| 70 | 2 | _mm256_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1); | |
| 71 | |||
| 72 | 2 | __m256 invScalar = _mm256_set1_ps(1.0 / scalar); | |
| 73 | |||
| 74 |
2/2✓ Branch 0 taken 32766 times.
✓ Branch 1 taken 2 times.
|
32768 | for (; number < oneEigthPoints; number++) { |
| 75 | // Convert 8 bit values into 16 bit values | ||
| 76 | 65532 | x = _mm256_cvtepi8_epi16(_mm_load_si128((__m128i*)a)); | |
| 77 | 65532 | y = _mm256_cvtepi8_epi16(_mm_load_si128((__m128i*)b)); | |
| 78 | |||
| 79 | // Calculate the ar*cr - ai*(-ci) portions | ||
| 80 | 32766 | realz = _mm256_madd_epi16(x, y); | |
| 81 | |||
| 82 | // Calculate the complex conjugate of the cr + ci j values | ||
| 83 | 32766 | y = _mm256_sign_epi16(y, conjugateSign); | |
| 84 | |||
| 85 | // Shift the order of the cr and ci values | ||
| 86 | 32766 | y = _mm256_shufflehi_epi16(_mm256_shufflelo_epi16(y, _MM_SHUFFLE(2, 3, 0, 1)), | |
| 87 | _MM_SHUFFLE(2, 3, 0, 1)); | ||
| 88 | |||
| 89 | // Calculate the ar*(-ci) + cr*(ai) | ||
| 90 | 32766 | imagz = _mm256_madd_epi16(x, y); | |
| 91 | |||
| 92 | // Interleave real and imaginary and then convert to float values | ||
| 93 | 65532 | retlo = _mm256_cvtepi32_ps(_mm256_unpacklo_epi32(realz, imagz)); | |
| 94 | |||
| 95 | // Normalize the floating point values | ||
| 96 | 32766 | retlo = _mm256_mul_ps(retlo, invScalar); | |
| 97 | |||
| 98 | // Interleave real and imaginary and then convert to float values | ||
| 99 | 65532 | rethi = _mm256_cvtepi32_ps(_mm256_unpackhi_epi32(realz, imagz)); | |
| 100 | |||
| 101 | // Normalize the floating point values | ||
| 102 | 32766 | rethi = _mm256_mul_ps(rethi, invScalar); | |
| 103 | |||
| 104 | 32766 | ret = _mm256_permute2f128_ps(retlo, rethi, 0b00100000); | |
| 105 | _mm256_store_ps((float*)c, ret); | ||
| 106 | 32766 | c += 4; | |
| 107 | |||
| 108 | 32766 | ret = _mm256_permute2f128_ps(retlo, rethi, 0b00110001); | |
| 109 | _mm256_store_ps((float*)c, ret); | ||
| 110 | 32766 | c += 4; | |
| 111 | |||
| 112 | 32766 | a += 8; | |
| 113 | 32766 | b += 8; | |
| 114 | } | ||
| 115 | |||
| 116 | 2 | number = oneEigthPoints * 8; | |
| 117 | 2 | float* cFloatPtr = (float*)&cVector[number]; | |
| 118 | 2 | int8_t* a8Ptr = (int8_t*)&aVector[number]; | |
| 119 | 2 | int8_t* b8Ptr = (int8_t*)&bVector[number]; | |
| 120 |
2/2✓ Branch 0 taken 14 times.
✓ Branch 1 taken 2 times.
|
16 | for (; number < num_points; number++) { |
| 121 | 14 | float aReal = (float)*a8Ptr++; | |
| 122 | 14 | float aImag = (float)*a8Ptr++; | |
| 123 | 14 | lv_32fc_t aVal = lv_cmake(aReal, aImag); | |
| 124 | 14 | float bReal = (float)*b8Ptr++; | |
| 125 | 14 | float bImag = (float)*b8Ptr++; | |
| 126 | 14 | lv_32fc_t bVal = lv_cmake(bReal, -bImag); | |
| 127 | 14 | lv_32fc_t temp = aVal * bVal; | |
| 128 | |||
| 129 | 14 | *cFloatPtr++ = lv_creal(temp) / scalar; | |
| 130 | 14 | *cFloatPtr++ = lv_cimag(temp) / scalar; | |
| 131 | } | ||
| 132 | 2 | } | |
| 133 | #endif /* LV_HAVE_AVX2*/ | ||
| 134 | |||
| 135 | |||
| 136 | #ifdef LV_HAVE_SSE4_1 | ||
| 137 | #include <smmintrin.h> | ||
| 138 | |||
| 139 | static inline void | ||
| 140 | 2 | volk_8ic_x2_s32f_multiply_conjugate_32fc_a_sse4_1(lv_32fc_t* cVector, | |
| 141 | const lv_8sc_t* aVector, | ||
| 142 | const lv_8sc_t* bVector, | ||
| 143 | const float scalar, | ||
| 144 | unsigned int num_points) | ||
| 145 | { | ||
| 146 | 2 | unsigned int number = 0; | |
| 147 | 2 | const unsigned int quarterPoints = num_points / 4; | |
| 148 | |||
| 149 | __m128i x, y, realz, imagz; | ||
| 150 | __m128 ret; | ||
| 151 | 2 | lv_32fc_t* c = cVector; | |
| 152 | 2 | const lv_8sc_t* a = aVector; | |
| 153 | 2 | const lv_8sc_t* b = bVector; | |
| 154 | 2 | __m128i conjugateSign = _mm_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1); | |
| 155 | |||
| 156 | 2 | __m128 invScalar = _mm_set_ps1(1.0 / scalar); | |
| 157 | |||
| 158 |
2/2✓ Branch 0 taken 65534 times.
✓ Branch 1 taken 2 times.
|
65536 | for (; number < quarterPoints; number++) { |
| 159 | // Convert into 8 bit values into 16 bit values | ||
| 160 | 131068 | x = _mm_cvtepi8_epi16(_mm_loadl_epi64((__m128i*)a)); | |
| 161 | 131068 | y = _mm_cvtepi8_epi16(_mm_loadl_epi64((__m128i*)b)); | |
| 162 | |||
| 163 | // Calculate the ar*cr - ai*(-ci) portions | ||
| 164 | 65534 | realz = _mm_madd_epi16(x, y); | |
| 165 | |||
| 166 | // Calculate the complex conjugate of the cr + ci j values | ||
| 167 | 65534 | y = _mm_sign_epi16(y, conjugateSign); | |
| 168 | |||
| 169 | // Shift the order of the cr and ci values | ||
| 170 | 65534 | y = _mm_shufflehi_epi16(_mm_shufflelo_epi16(y, _MM_SHUFFLE(2, 3, 0, 1)), | |
| 171 | _MM_SHUFFLE(2, 3, 0, 1)); | ||
| 172 | |||
| 173 | // Calculate the ar*(-ci) + cr*(ai) | ||
| 174 | 65534 | imagz = _mm_madd_epi16(x, y); | |
| 175 | |||
| 176 | // Interleave real and imaginary and then convert to float values | ||
| 177 | 131068 | ret = _mm_cvtepi32_ps(_mm_unpacklo_epi32(realz, imagz)); | |
| 178 | |||
| 179 | // Normalize the floating point values | ||
| 180 | 65534 | ret = _mm_mul_ps(ret, invScalar); | |
| 181 | |||
| 182 | // Store the floating point values | ||
| 183 | _mm_store_ps((float*)c, ret); | ||
| 184 | 65534 | c += 2; | |
| 185 | |||
| 186 | // Interleave real and imaginary and then convert to float values | ||
| 187 | 131068 | ret = _mm_cvtepi32_ps(_mm_unpackhi_epi32(realz, imagz)); | |
| 188 | |||
| 189 | // Normalize the floating point values | ||
| 190 | 65534 | ret = _mm_mul_ps(ret, invScalar); | |
| 191 | |||
| 192 | // Store the floating point values | ||
| 193 | _mm_store_ps((float*)c, ret); | ||
| 194 | 65534 | c += 2; | |
| 195 | |||
| 196 | 65534 | a += 4; | |
| 197 | 65534 | b += 4; | |
| 198 | } | ||
| 199 | |||
| 200 | 2 | number = quarterPoints * 4; | |
| 201 | 2 | float* cFloatPtr = (float*)&cVector[number]; | |
| 202 | 2 | int8_t* a8Ptr = (int8_t*)&aVector[number]; | |
| 203 | 2 | int8_t* b8Ptr = (int8_t*)&bVector[number]; | |
| 204 |
2/2✓ Branch 0 taken 6 times.
✓ Branch 1 taken 2 times.
|
8 | for (; number < num_points; number++) { |
| 205 | 6 | float aReal = (float)*a8Ptr++; | |
| 206 | 6 | float aImag = (float)*a8Ptr++; | |
| 207 | 6 | lv_32fc_t aVal = lv_cmake(aReal, aImag); | |
| 208 | 6 | float bReal = (float)*b8Ptr++; | |
| 209 | 6 | float bImag = (float)*b8Ptr++; | |
| 210 | 6 | lv_32fc_t bVal = lv_cmake(bReal, -bImag); | |
| 211 | 6 | lv_32fc_t temp = aVal * bVal; | |
| 212 | |||
| 213 | 6 | *cFloatPtr++ = lv_creal(temp) / scalar; | |
| 214 | 6 | *cFloatPtr++ = lv_cimag(temp) / scalar; | |
| 215 | } | ||
| 216 | 2 | } | |
| 217 | #endif /* LV_HAVE_SSE4_1 */ | ||
| 218 | |||
| 219 | |||
| 220 | #ifdef LV_HAVE_GENERIC | ||
| 221 | |||
| 222 | static inline void | ||
| 223 | 2 | volk_8ic_x2_s32f_multiply_conjugate_32fc_generic(lv_32fc_t* cVector, | |
| 224 | const lv_8sc_t* aVector, | ||
| 225 | const lv_8sc_t* bVector, | ||
| 226 | const float scalar, | ||
| 227 | unsigned int num_points) | ||
| 228 | { | ||
| 229 | 2 | unsigned int number = 0; | |
| 230 | 2 | float* cPtr = (float*)cVector; | |
| 231 | 2 | const float invScalar = 1.0 / scalar; | |
| 232 | 2 | int8_t* a8Ptr = (int8_t*)aVector; | |
| 233 | 2 | int8_t* b8Ptr = (int8_t*)bVector; | |
| 234 |
2/2✓ Branch 0 taken 262142 times.
✓ Branch 1 taken 2 times.
|
262144 | for (number = 0; number < num_points; number++) { |
| 235 | 262142 | float aReal = (float)*a8Ptr++; | |
| 236 | 262142 | float aImag = (float)*a8Ptr++; | |
| 237 | 262142 | lv_32fc_t aVal = lv_cmake(aReal, aImag); | |
| 238 | 262142 | float bReal = (float)*b8Ptr++; | |
| 239 | 262142 | float bImag = (float)*b8Ptr++; | |
| 240 | 262142 | lv_32fc_t bVal = lv_cmake(bReal, -bImag); | |
| 241 | 262142 | lv_32fc_t temp = aVal * bVal; | |
| 242 | |||
| 243 | 262142 | *cPtr++ = (lv_creal(temp) * invScalar); | |
| 244 | 262142 | *cPtr++ = (lv_cimag(temp) * invScalar); | |
| 245 | } | ||
| 246 | 2 | } | |
| 247 | #endif /* LV_HAVE_GENERIC */ | ||
| 248 | |||
| 249 | |||
| 250 | #endif /* INCLUDED_volk_8ic_x2_s32f_multiply_conjugate_32fc_a_H */ | ||
| 251 | |||
| 252 | #ifndef INCLUDED_volk_8ic_x2_s32f_multiply_conjugate_32fc_u_H | ||
| 253 | #define INCLUDED_volk_8ic_x2_s32f_multiply_conjugate_32fc_u_H | ||
| 254 | |||
| 255 | #include <inttypes.h> | ||
| 256 | #include <stdio.h> | ||
| 257 | #include <volk/volk_complex.h> | ||
| 258 | |||
| 259 | #ifdef LV_HAVE_AVX2 | ||
| 260 | #include <immintrin.h> | ||
| 261 | |||
| 262 | static inline void | ||
| 263 | 2 | volk_8ic_x2_s32f_multiply_conjugate_32fc_u_avx2(lv_32fc_t* cVector, | |
| 264 | const lv_8sc_t* aVector, | ||
| 265 | const lv_8sc_t* bVector, | ||
| 266 | const float scalar, | ||
| 267 | unsigned int num_points) | ||
| 268 | { | ||
| 269 | 2 | unsigned int number = 0; | |
| 270 | 2 | const unsigned int oneEigthPoints = num_points / 8; | |
| 271 | |||
| 272 | __m256i x, y, realz, imagz; | ||
| 273 | __m256 ret, retlo, rethi; | ||
| 274 | 2 | lv_32fc_t* c = cVector; | |
| 275 | 2 | const lv_8sc_t* a = aVector; | |
| 276 | 2 | const lv_8sc_t* b = bVector; | |
| 277 | __m256i conjugateSign = | ||
| 278 | 2 | _mm256_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1); | |
| 279 | |||
| 280 | 2 | __m256 invScalar = _mm256_set1_ps(1.0 / scalar); | |
| 281 | |||
| 282 |
2/2✓ Branch 0 taken 32766 times.
✓ Branch 1 taken 2 times.
|
32768 | for (; number < oneEigthPoints; number++) { |
| 283 | // Convert 8 bit values into 16 bit values | ||
| 284 | 65532 | x = _mm256_cvtepi8_epi16(_mm_loadu_si128((__m128i*)a)); | |
| 285 | 65532 | y = _mm256_cvtepi8_epi16(_mm_loadu_si128((__m128i*)b)); | |
| 286 | |||
| 287 | // Calculate the ar*cr - ai*(-ci) portions | ||
| 288 | 32766 | realz = _mm256_madd_epi16(x, y); | |
| 289 | |||
| 290 | // Calculate the complex conjugate of the cr + ci j values | ||
| 291 | 32766 | y = _mm256_sign_epi16(y, conjugateSign); | |
| 292 | |||
| 293 | // Shift the order of the cr and ci values | ||
| 294 | 32766 | y = _mm256_shufflehi_epi16(_mm256_shufflelo_epi16(y, _MM_SHUFFLE(2, 3, 0, 1)), | |
| 295 | _MM_SHUFFLE(2, 3, 0, 1)); | ||
| 296 | |||
| 297 | // Calculate the ar*(-ci) + cr*(ai) | ||
| 298 | 32766 | imagz = _mm256_madd_epi16(x, y); | |
| 299 | |||
| 300 | // Interleave real and imaginary and then convert to float values | ||
| 301 | 65532 | retlo = _mm256_cvtepi32_ps(_mm256_unpacklo_epi32(realz, imagz)); | |
| 302 | |||
| 303 | // Normalize the floating point values | ||
| 304 | 32766 | retlo = _mm256_mul_ps(retlo, invScalar); | |
| 305 | |||
| 306 | // Interleave real and imaginary and then convert to float values | ||
| 307 | 65532 | rethi = _mm256_cvtepi32_ps(_mm256_unpackhi_epi32(realz, imagz)); | |
| 308 | |||
| 309 | // Normalize the floating point values | ||
| 310 | 32766 | rethi = _mm256_mul_ps(rethi, invScalar); | |
| 311 | |||
| 312 | 32766 | ret = _mm256_permute2f128_ps(retlo, rethi, 0b00100000); | |
| 313 | _mm256_storeu_ps((float*)c, ret); | ||
| 314 | 32766 | c += 4; | |
| 315 | |||
| 316 | 32766 | ret = _mm256_permute2f128_ps(retlo, rethi, 0b00110001); | |
| 317 | _mm256_storeu_ps((float*)c, ret); | ||
| 318 | 32766 | c += 4; | |
| 319 | |||
| 320 | 32766 | a += 8; | |
| 321 | 32766 | b += 8; | |
| 322 | } | ||
| 323 | |||
| 324 | 2 | number = oneEigthPoints * 8; | |
| 325 | 2 | float* cFloatPtr = (float*)&cVector[number]; | |
| 326 | 2 | int8_t* a8Ptr = (int8_t*)&aVector[number]; | |
| 327 | 2 | int8_t* b8Ptr = (int8_t*)&bVector[number]; | |
| 328 |
2/2✓ Branch 0 taken 14 times.
✓ Branch 1 taken 2 times.
|
16 | for (; number < num_points; number++) { |
| 329 | 14 | float aReal = (float)*a8Ptr++; | |
| 330 | 14 | float aImag = (float)*a8Ptr++; | |
| 331 | 14 | lv_32fc_t aVal = lv_cmake(aReal, aImag); | |
| 332 | 14 | float bReal = (float)*b8Ptr++; | |
| 333 | 14 | float bImag = (float)*b8Ptr++; | |
| 334 | 14 | lv_32fc_t bVal = lv_cmake(bReal, -bImag); | |
| 335 | 14 | lv_32fc_t temp = aVal * bVal; | |
| 336 | |||
| 337 | 14 | *cFloatPtr++ = lv_creal(temp) / scalar; | |
| 338 | 14 | *cFloatPtr++ = lv_cimag(temp) / scalar; | |
| 339 | } | ||
| 340 | 2 | } | |
| 341 | #endif /* LV_HAVE_AVX2*/ | ||
| 342 | |||
| 343 | |||
| 344 | #endif /* INCLUDED_volk_8ic_x2_s32f_multiply_conjugate_32fc_u_H */ | ||
| 345 |